期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Using a stand-level model to predict light absorption in stands with vertically and horizontally heterogeneous canopies 被引量:1
1
作者 David I Forrester Ruben Guisasola +3 位作者 Xiaolu Tang Axel T Albrecht Tran Lam Dong Guerric le Maire 《Forestry Studies in China》 CAS 2014年第3期158-176,共19页
Background: Forest ecosystem functioning is strongly influenced by the absorption of photosynthetically active radiation (APAR), and therefore, accurate predictions of APAR are critical for many process-based fores... Background: Forest ecosystem functioning is strongly influenced by the absorption of photosynthetically active radiation (APAR), and therefore, accurate predictions of APAR are critical for many process-based forest growth models. The Lambert-Beer law can be applied to estimate APAR for simple homogeneous canopies composed of one layer, one species, and no canopy gaps. However, the vertical and horizontal structure of forest canopies is rarely homogeneous. Detailed tree-level models can account for this heterogeneity but these often have high input and computational demands and work on finer temporal and spatial resolutions than required by stand-level growth models. The aim of this study was to test a stand-level light absorption model that can estimate APAR by individual species in mixed-species and multi-layered stands with any degree of canopy openness including open-grown trees to closed canopies. Methods: The stand-level model was compared with a detailed tree-level model that has already been tested in mixed-species stands using empirical data. Both models were parameterised for five different forests, including a wide range of species compositions, species proportions, stand densities, crown architectures and canopy structures. Results: The stand-level model performed well in all stands except in the stand where extinction coefficients were unusually variable and it appears unlikely that APAR could be predicted in such stands using (tree- or stand-level) models that do not allow individuals of a given species to have different extinction coefficients, leaf-area density or analogous parameters. Conclusion: This model is parameterised with species-specific information about extinction coefficients and mean crown length, diameter, height and leaf area. It could be used to examine light dynamics in complex canopies and in stand-level growth models. 展开更多
关键词 complex forests MIXED-SPECIES Stand structure Extinction coefficient Lambert-Beer law Light absorption
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部