期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
COMPLEX REACTIONS OF ETHYL-GLUCOSIDES SYNTHESIS OVER ION EXCHANGE RESIN
1
作者 Tu Maobing and Wei Dongzhi (The State Key Laboratory of Bioreactor Engineering ECUST, Shanghai 200237) 《化工学报》 EI CAS CSCD 北大核心 2000年第S1期163-167,共5页
The glycosidation reactions of D-glucose with ethanol have been carried out over a reusable and separable heterogeneous catalyst, namely, ion exchange resin. Detailed kinetic data for these reactions are reported. A c... The glycosidation reactions of D-glucose with ethanol have been carried out over a reusable and separable heterogeneous catalyst, namely, ion exchange resin. Detailed kinetic data for these reactions are reported. A complex reaction model has been developed for interpreting the data. The reactions were found to be global second-order reactions and first -order with respect to each component. Meanwhile, a new regression method is applied to determine the rate constant from time-dependent profiles. 展开更多
关键词 Ethyl-glucoside solid catalyst kinetic complex reactions
下载PDF
Linear free energy relationships between reaction rate constants and equilibrium constants of complex compounds——III. Kinetics and mechanisms of ternary complex formation between (5-X-1, 10-phenanthroline)copper(II) and threonine 被引量:1
2
作者 CHEN Rong-Ti (Y.T.Chen) +1 位作者 ZHANG Qi-Yan LI Yue-Jin 《Acta Chimica Sinica English Edition》 SCIE CAS CSCD 1989年第4期342-348,共1页
The kinetics of ternary complex formation involving Cu(5-X-1, 10-phen) and threonine (CuAL, A=5-X-1, 10-phen; L=threonine or represented by O-N; X=NO_2, Cl, H, CH_3) has been studied by temperature-jump and stopped-fl... The kinetics of ternary complex formation involving Cu(5-X-1, 10-phen) and threonine (CuAL, A=5-X-1, 10-phen; L=threonine or represented by O-N; X=NO_2, Cl, H, CH_3) has been studied by temperature-jump and stopped-flow methods. The formation rate constants, k_f(M^(-1).s^(-1)), for the complexation reaction, CuA + LCuAL, are as follows; X=NO_2, 8.68×10~8; X=Cl, 7.13×10~8; X=H, 6.12×10~8; X=CH_3, 5.42×10~8. The rate constants for zwitterion attack are nil within experimental error. It has been found that a linear free energy relationship exists between the stability(logK_(CuAL)^(CuA) of the complexes CuAL and log kf as follows: IogK_(CuAL)^(CuA)=0.13 + 0.83 logk_f, r=0.99. It suggested that the formation rate governed the stability of the ternary complexes. The rates of formation of the ternary complexes increased with decreasing electron-donating property of the substituents. A linear relationship was found to exist as expressed by the following equation: log(k_f^R/k_F^O) = 0.097σ, r=0.96. A mechanism involves a rapid equilibrium between CuA and L followed by a slow ring closure of L. 展开更多
关键词 rate kinetics and mechanisms of ternary complex formation between and threonine phenanthroline)copper II Linear free energy relationships between reaction rate constants and equilibrium constants of complex compounds X-1 III free
全文增补中
Planarization mechanism of alkaline copper CMP slurry based on chemical mechanical kinetics 被引量:6
3
作者 王胜利 尹康达 +2 位作者 李湘 岳红维 刘云岭 《Journal of Semiconductors》 EI CAS CSCD 2013年第8期197-200,共4页
The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acid... The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acidic copper slurry,the copper slurry used in this research adopted the way of alkaline technology based on complexation. According to the passivation property of copper in alkaline conditions,the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole(BTA),by which the problems caused by BTA can be avoided.Through the experiments and theories research,the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed. Based on the chemical mechanical kinetics theory,the planarization mechanism of alkaline copper slurry was established. In alkaline CMP conditions,the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier.The kinetic energy at the concave position should be lower than the complexation reaction barrier,which is the key to achieve planarization. 展开更多
关键词 chemical mechanical kinetics alkaline copper slurry planarization mechanism complexation reaction barrier
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部