The results from a hybrid approach that combines a mesoscale meteorological model with a diagnostic model to produce high-resolution wind fields in complex coastal topography are evaluated.The diagnostic wind model(Ca...The results from a hybrid approach that combines a mesoscale meteorological model with a diagnostic model to produce high-resolution wind fields in complex coastal topography are evaluated.The diagnostic wind model(California Meteorological Model,CALMET) with 100-m horizontal spacing was driven with outputs from the Weather Research and Forecasting(WRF) model to obtain near-surface winds for the 1-year period from 12 September 2003 to 11 September 2004.Results were compared with wind observations at four sites.Traditional statistical scores,including correlation coefficients,standard deviations(SDs) and mean absolute errors(MAEs),indicate that the wind estimates from the WRF/CALMET modeling system are produced reasonably well.The correlation coefficients are relatively large,ranging from 0.5 to 0.7 for the zonal wind component and from 0.75 to 0.85 for the meridional wind component.MAEs for wind speed range from 1.5 to 2.0 m s-1 at 10 meters above ground level(AGL) and from 2.0 to 2.5 m s-1 at 60 m AGL.MAEs for wind direction range from 30 to 40 degrees at both levels.A spectral decomposition of the time series of wind speed shows positive impacts of CALMET in improving the mesoscale winds.Moreover,combining the CALMET model with WRF significantly improves the spatial variability of the simulated wind fields.It can be concluded that the WRF/CALMET modeling system is capable of providing a detailed near-surface wind field,but the physics in the diagnostic CALMET model needs to be further improved.展开更多
The mobility of the vectored thruster AUV in different environment is the important premise of control system design. The new type of autonomous underwater vehicle (AUV) equipped with rudders and vectored thrusters wh...The mobility of the vectored thruster AUV in different environment is the important premise of control system design. The new type of autonomous underwater vehicle (AUV) equipped with rudders and vectored thrusters which are combined to control the course is studied. Firstly, Euler angles representation and quaternion method are applied to establish six-DOF kinematic model respectively, then Newton second law and Lagrangian approach are used to deduce the vectored thruster AUV’s nonlinear dynamic equations with six degrees of freedom (DOF) respectively in complex sea conditions based on the random wave theory according to the structural and kinetic characteristics of the vectored thruster AUV in this paper. The kinematic models and dynamic models based on different theories have the same expression and conclusion, which shows that the kinematic models and dynamic models of the vectored thruster AUV are accurate. The Runge-Kutta arithmetic is used to solve the dynamic equations, which not only can simulate the motions such as cruise and hover but also can describe the vehicle’s low-frequency and high-frequency motion. The results of computation show that the mobility of the vectored thruster AUV in interference-free environment and the integrated signals including low-frequency motion signal and high-frequency motion signal in environmental disturbance accord with practical situation, which not only solve the problem of especial singularities when the pitch angle θ = ±90° but also clears up the difficulties of computation and display of the coupled nonlinear motion equations in complex sea conditions. Moreover, the high maneuverability of the vectored thruster AUV equipped with rudders and vectored thrusters is validated, which lays a foundation for the control system design.展开更多
Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian ...Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian University of Technology was employed to perform different types of test on the saturated soft marine clay in the Yangtze Estuary. Undisturbed samples of the clay were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consolidation parameters. Investigated were the effects of the initial orientation angle of the major principal stress, initial ratio of deviatoric stress, initial coefficient of intermediate principal stress and continuous rotation of principal stress axes on the stiffness degradation. It is found that the degradation index decreases (or degradation degree increases) significantly with increasing initial orientation angle of the major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientation angle of the major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate principal stress is less evident and this trend is more clearly reflected by the results of the cyclic torsional shear tests than those of the cyclic coupling shear tests. At the same cycle number, the degradation index obtained from the cyclic torsional shear test is higher than that from the cyclic coupling shear test. The main reason is that the continuous rotation in principal stress directions during cyclic coupling shear damages the original structure of the soil more than the cyclic torsional shear does.Based on a series of experiments, a mathematical model for stiffness degradation is proposed and the relevant parameters are determined.展开更多
Autonomous underwater vehicles (AUVs) navigating in complex sea conditions usually require a strong control system to keep the fastness and stability. The nonlinear trajectory tracking control system of a new AUV in c...Autonomous underwater vehicles (AUVs) navigating in complex sea conditions usually require a strong control system to keep the fastness and stability. The nonlinear trajectory tracking control system of a new AUV in complex sea conditions was presented. According to the theory of submarines,the six-DOF kinematic and dynamic models were decomposed into two mutually non-coupled vertical and horizontal plane subsystems. Then,different sliding mode control algorithms were used to study the trajectory tracking control. Because the yaw angle and yaw angle rate rather than the displacement of the new AUV can be measured directly on the horizontal plane,the sliding mode control algorithm combining cross track error method and line of sight method was used to fulfill its high-precision trajectory tracking control in the complex sea conditions. As the vertical displacement of the new AUV can be measured,in order to achieve the tracking of time-varying depth signal,a stable sliding mode controller was designed based on the single-input multi-state system,which took into account the characteristic of the hydroplane and the amplitude and rate constraints of the hydroplane angle. Moreover,the application of dynamic boundary layer can improve the robustness and control accuracy of the system. The computational results show that the designed sliding mode control systems of the horizontal and vertical planes can ensure the trajectory tracking performance and accuracy of the new AUV in complex sea conditions. The impacts of currents and waves on the sliding mode controller of the new AUV were analyzed qualitatively and quantitatively by comparing the trajectory tracking performance of the new AUV in different sea conditions,which provides an effective theoretical guidance and technical support for the control system design of the new AUV in real complex environment.展开更多
The methods combined by test, field monitoring and theoretical analysis were adopted to do the systemic research on the rock mass from micro-structure to macro-deformation, and rheological model of Jinchuan rock mass ...The methods combined by test, field monitoring and theoretical analysis were adopted to do the systemic research on the rock mass from micro-structure to macro-deformation, and rheological model of Jinchuan rock mass was established to discuss the reasonable supporting time. Resuhs show that supporting after suitable stress and displacement release can benefit for the long-term stability of surrounding rock.展开更多
Improvement of the fluidity and setting time of grouting materials has been recognized as an effective approach of seepage prevention in foundation works, and it is quite common to be used for handling severe leakages...Improvement of the fluidity and setting time of grouting materials has been recognized as an effective approach of seepage prevention in foundation works, and it is quite common to be used for handling severe leakages in complex ground conditions, such as loose, broken and fully fissured stratum. For the purposed of better meeting the engineering requirements, experimental studies were conducted in this study with focus on the nanocomposite grouting materials and the related controlled grouting technology. As compared with the commonly used silicate-sulpho-aluminate composite cement, which is characterized by relatively poor rheological property, quick setting time and low strength, the most suitable nano-material with proper reactants were selected intentionally to improve the mentioned attributes of composite cement. Due to the setting time and strength of the targeted cement slurry behaving with poor performance of harmonization to engineering construction problems, hydration synergistic effect of these composites were investigated in our experiments. Results showed that the properties of grouting materials, including initial fluidity, setting time, ideal right-angle thickening, and early strength and late strength were sufficient to produce an expected grouting application. It is therefore advocated that the refined grouting material could provide a better solution to fix grouting problems in complex ground cementing operations.展开更多
Flexible conductive fibers are essential for wearable electronics and smart electronic textiles.However,in complex operating conditions,conductive fibers will inevitably fracture or damage.Herein,we have developed an ...Flexible conductive fibers are essential for wearable electronics and smart electronic textiles.However,in complex operating conditions,conductive fibers will inevitably fracture or damage.Herein,we have developed an elastic conductive self-healable fiber(C-SHF),of which the electrical and mechanical properties can efficiently heal in a wide operating range,including room temperature,underwater,and low temperature.This advantage can be owed to the combination of reversible covalent imine bond and disulfide bond,as well as the instantaneous self-healing ability of liquid metal.The C-SHF,with stretchability,conductivity stability,and universal self-healing properties,can be used as an electrical signal transmission line at high strain and under different operating conditions.Besides,C-SHF was assembled into a double-layer capacitor structure to construct a self-healable sensor,which can effectively respond to pressure as a wearable motion detector.展开更多
The application of advanced high strength steel (AHSS) has an important significance in the development of the lightweight of automobile, but the parts made of AHSS usually have defects, such as fracture and large a...The application of advanced high strength steel (AHSS) has an important significance in the development of the lightweight of automobile, but the parts made of AHSS usually have defects, such as fracture and large amount of springback, etc. In this paper, a model of multi-pass roll form- ing and springback process of AHSS is established with finite element software ABAQUS. Then a roll forming experiment is performed, and simulation and experimental results have been compared and analyzed. The model is established under complex contact conditions, including self-contact condi- tion. The results shows that during the process of sheet bending, large Mises stresses appear at ben- ding corners. The smaller the bending radius is, the larger the Mises stress and strain are. Thick- ness of sheet metal changes exceeds a certain limit, the differently if the bending radius is different. When the bending radius change tendency of the sheet thickness turns from increase to decrease.展开更多
Sixteen operating conditions were determined by the standards JIS-7105 and JIS-7106. The strength under complex operating conditions was calculated with HyperWorks and the strength analysis confirmed eight dangerous p...Sixteen operating conditions were determined by the standards JIS-7105 and JIS-7106. The strength under complex operating conditions was calculated with HyperWorks and the strength analysis confirmed eight dangerous points of the metro bolster beam. Since the metro did not consider the impact of traffic lights and sudden road conditions, the load spectra at eight dangerous points were established by counting the running time,passenger flow,site layout,site quantity and turning situations. The fatigue life of the metro bolster beam was projected by the von Mises stress method and the critical plane method. The results of these two methods revealed that the maximum damage occurred at the dangerous point 7,and the fatigue life based on the critical plane method was shorter than that based on the von Mises stress method.Since the McDiarmid model considered the effect of the magnitude and direction of the normal stress and the amplitude of the shear stress,it is closer to the actual situations of the metro. Hence,the McDiarmid model based on the critical plane method is more reasonable,and the method of fatigue life prediction is also suitable to the metro bolster beam of other lines.展开更多
Owing to sluggish ionic mobility at low temperatures, supercapacitors, as well as other energy-storage devices, always suffer from severe capacity decay and even failure under extreme low-temperature circumstances. So...Owing to sluggish ionic mobility at low temperatures, supercapacitors, as well as other energy-storage devices, always suffer from severe capacity decay and even failure under extreme low-temperature circumstances. Solar-thermal-enabled self-heating promises an attractive approach to overcome this issue.Here, we report a unique H-bonding charge-transfer complex with a high photothermal conversion efficiency of 79.5% at 405 nm based on chloranilic acid and albendazole. Integrated with a microsupercapacitor, the chloranilic acid-albendazole complex(CAC) film prompts an apparent temperature increase of 22.7 °C under 1 sun illumination at-32.6 °C, effectively elevating the working temperature of devices.As a result, the rate capability of the microsupercapacitor has been significantly improved with a 17-fold increase in capacitance at a current density of 60 μA cm^(-2), leading to outstanding low-temperature performances. Importantly, the integrated device is capable of working at a low temperature of-30 °C in the open air, which demonstrates the potential of CAC in practical applications for low-temperature ultracapacitive energy-storage devices.展开更多
Based on an example of a project in Tangshan, the high-rise buildings are built in karst area and mined out affected area which is treated by high pressure grouting, and foundation is adopted the form of pile raft fou...Based on an example of a project in Tangshan, the high-rise buildings are built in karst area and mined out affected area which is treated by high pressure grouting, and foundation is adopted the form of pile raft foundation. By long-term measured settlement of high-rise buildings, It is found that foundation settlement is linear increase with the increase of load before the building is roof-sealed, and the settlement increases slowly after the building is roof-sealed, and the curve tends to converge, and the foundation consolidation is completed. The settlement of the foundation is about 80% - 84% of the total settlement before the building is roof-sealed.Three layer BP neural network model is used to predict the settlement in the karst area and mined affected area.Compared with the measured data, the relative difference of the prediction is 0.91% - 2.08% in the karst area, and is 0.95% - 2.11% in mined affected area. The prediction results of high precision can meet the engineering requirements.展开更多
There exists a critical cyclic stress ratio when sand or clay is subjected to cyclic loading. It is an index dis-tinguishing stable state or failure state. The soil static and dynamic universal triaxial and torsional ...There exists a critical cyclic stress ratio when sand or clay is subjected to cyclic loading. It is an index dis-tinguishing stable state or failure state. The soil static and dynamic universal triaxial and torsional shear apparatus de-veloped by Dalian University of Technology in China was employed to perform different types of tests on saturated soft marine clay in the Yangtze estuary. Undisturbed samples were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consoli-dation parameters. The effects of initial orientation angle of major principal stress, initial ratio of deviatoric stress,initial coefficient of intermediate principal stress and stress mode of cyclic shear on the critical cyclic stress ratio wereinvestigated. It is found that the critical cyclic stress ratio decreases significantly with increasing initial orientation angle of major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientationangle of major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate prin-cipal stress is less evident. Under the same consolidation condition, the critical cyclic stress ratio from the cyclic cou-pling shear test is lower than that from the cyclic torsional shear test, indicating that the stress mode of cyclic shear has an obvious effect on the critical cyclic stress ratio. The main reason is that the continuous rotation in principal stressdirections during cyclic coupling shear damages the original structure of soil more than the cyclic torsional shear does.展开更多
Business growth and development are similar to a selforganization evolution system. This paper intends to explore the context, drive and process within enterprise self-organization evolution from a conceptual perspect...Business growth and development are similar to a selforganization evolution system. This paper intends to explore the context, drive and process within enterprise self-organization evolution from a conceptual perspective. And an enterprise evolution model can be applied on the basis of ecological logistic equations to approach the elementary process and the growth stage of organization. Moreover,the influence of diverse variable on the evolution of enterprise growth is discussed. At last, the study concludes that new structures and functions can emerge within organizations and enterprises,which contribute to transformation and upgrade during their self-organization evolution.展开更多
Complex conditional statement is one of the bad code smells, which affects the quality of the code and design of software. In the proposed approach, two commonly-used design patterns for handling complex conditional s...Complex conditional statement is one of the bad code smells, which affects the quality of the code and design of software. In the proposed approach, two commonly-used design patterns for handling complex conditional statements are selected, and they are the factory method pattern and the strategy pattem. Two pattern-directed refactoring approaches based on the two design patterns are proposed. Each approach contains a refactoring opportunities identification algorithm and an automated refactoring algorithm. After parsing the abstract syntax tree generated from source code, the refactoring opportunities are identified effectively and automatically. Then, for candidate code, refactoring algorithms are executed automatically, which are used to simplify or remove complex conditional statements. By empirical analysis and quality assessment, the code after refactoring has better maintainability and extensibility, and the proposed approach for automated pattern-directed refactoring succeeds to reduce code size and complexity of classes.展开更多
Increase in requirement of hydrosulphuric water for improvement of the population set the task of identification of places of their possible congestion for hydrogeological service. Earlier detection of such congestion...Increase in requirement of hydrosulphuric water for improvement of the population set the task of identification of places of their possible congestion for hydrogeological service. Earlier detection of such congestions was accidental at well-drilling of different function. Therefore, development of new methodical approaches of search and allocation of perspective zones of their formation was required. It was for this purpose necessary to study in what conditions and what factors have an impact on formation of underground hydrosulphuric water. So far, definition of communication attempts only with separate geochemical signs was known. Results of studying of influence on formations of hydrosulphuric water of such factors as lithologic and facial in combination with oil-and-gas content, the geological and structural and hydrodynamic mode are given in this work. It is established that the main sign for formation of hydrosulphuric water is existence of evaporite thickness and hydrocarbon congestions. Besides, it is shown that small depth (up to 2 km) of their bedding has to be an indispensable condition and existence of explosive violation on which there has to be a water infiltration (a geological and structural factor). In the Surkhandarya region, the hydrodynamic mode caused by inclined bedding of aquifers was also one of essential factors. Active water is an exchange process with washing away (oxidation) sulfate of the containing thicknesses and subsequently, its restoration in interaction with hydrocarbons with formation of hydrosulphuric water is described. The technique is developed and the expected card of perspective zones of formation of hydrosulphuric water is constructed.展开更多
The existing researches on singularity of parallel mechanism are mostly limited to the property and regularity of singularity locus and there is no further research into the geometric relationship between uncontrolled...The existing researches on singularity of parallel mechanism are mostly limited to the property and regularity of singularity locus and there is no further research into the geometric relationship between uncontrolled kinematic screw and parallel mechanism in singularity. A 3UPS-S parallel mechanism is presented which fulfils 3-DOF in rotation. The regularity of nutation angle singularity is analyzed based on the Jacobian matrix, and the singularity surface of 3UPS-S parallel mechanisms is obtained. By applying the concept of reciprocal product in screw theory, the singular kinematic screw is derived when 3UPS-S parallel mechanism is in singularity. The geometric relationship between singular kinematic screw and singular configuration of 3UPS-S parallel mechanism is investigated by using programs in MATLAB. It is revealed that there are two kinds of situation. Firstly, the three limbs of 3UPS-S parallel mechanism intersect the singular kinematic screw in space simultaneously; Secondly, two limbs cross the singular kinematic screw while the third limb parallels with that screw. It is concluded that the nutation angle singularity of 3UPS-S parallel mechanism belongs to the singular linear complexes. This paper sheds light into and clarifies the geometric relationship between singular kinematic screw and singular configuration of 3UPS-S parallel mechanism.展开更多
基金National Public Benefit Research Foundation of China (2008416048GYHY201006035)
文摘The results from a hybrid approach that combines a mesoscale meteorological model with a diagnostic model to produce high-resolution wind fields in complex coastal topography are evaluated.The diagnostic wind model(California Meteorological Model,CALMET) with 100-m horizontal spacing was driven with outputs from the Weather Research and Forecasting(WRF) model to obtain near-surface winds for the 1-year period from 12 September 2003 to 11 September 2004.Results were compared with wind observations at four sites.Traditional statistical scores,including correlation coefficients,standard deviations(SDs) and mean absolute errors(MAEs),indicate that the wind estimates from the WRF/CALMET modeling system are produced reasonably well.The correlation coefficients are relatively large,ranging from 0.5 to 0.7 for the zonal wind component and from 0.75 to 0.85 for the meridional wind component.MAEs for wind speed range from 1.5 to 2.0 m s-1 at 10 meters above ground level(AGL) and from 2.0 to 2.5 m s-1 at 60 m AGL.MAEs for wind direction range from 30 to 40 degrees at both levels.A spectral decomposition of the time series of wind speed shows positive impacts of CALMET in improving the mesoscale winds.Moreover,combining the CALMET model with WRF significantly improves the spatial variability of the simulated wind fields.It can be concluded that the WRF/CALMET modeling system is capable of providing a detailed near-surface wind field,but the physics in the diagnostic CALMET model needs to be further improved.
基金supported by National Hi-tech Research and Development Program of China(863 Program, Grant No. 2006AA09Z235)Hunan Provincial Innovation Foundation For Postgraduate of China(Grant No. CX2009B003)
文摘The mobility of the vectored thruster AUV in different environment is the important premise of control system design. The new type of autonomous underwater vehicle (AUV) equipped with rudders and vectored thrusters which are combined to control the course is studied. Firstly, Euler angles representation and quaternion method are applied to establish six-DOF kinematic model respectively, then Newton second law and Lagrangian approach are used to deduce the vectored thruster AUV’s nonlinear dynamic equations with six degrees of freedom (DOF) respectively in complex sea conditions based on the random wave theory according to the structural and kinetic characteristics of the vectored thruster AUV in this paper. The kinematic models and dynamic models based on different theories have the same expression and conclusion, which shows that the kinematic models and dynamic models of the vectored thruster AUV are accurate. The Runge-Kutta arithmetic is used to solve the dynamic equations, which not only can simulate the motions such as cruise and hover but also can describe the vehicle’s low-frequency and high-frequency motion. The results of computation show that the mobility of the vectored thruster AUV in interference-free environment and the integrated signals including low-frequency motion signal and high-frequency motion signal in environmental disturbance accord with practical situation, which not only solve the problem of especial singularities when the pitch angle θ = ±90° but also clears up the difficulties of computation and display of the coupled nonlinear motion equations in complex sea conditions. Moreover, the high maneuverability of the vectored thruster AUV equipped with rudders and vectored thrusters is validated, which lays a foundation for the control system design.
基金supported bythe National Natural Science Foundation of China(Grant Nos.50579006,50639010 and 50909014)
文摘Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian University of Technology was employed to perform different types of test on the saturated soft marine clay in the Yangtze Estuary. Undisturbed samples of the clay were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consolidation parameters. Investigated were the effects of the initial orientation angle of the major principal stress, initial ratio of deviatoric stress, initial coefficient of intermediate principal stress and continuous rotation of principal stress axes on the stiffness degradation. It is found that the degradation index decreases (or degradation degree increases) significantly with increasing initial orientation angle of the major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientation angle of the major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate principal stress is less evident and this trend is more clearly reflected by the results of the cyclic torsional shear tests than those of the cyclic coupling shear tests. At the same cycle number, the degradation index obtained from the cyclic torsional shear test is higher than that from the cyclic coupling shear test. The main reason is that the continuous rotation in principal stress directions during cyclic coupling shear damages the original structure of the soil more than the cyclic torsional shear does.Based on a series of experiments, a mathematical model for stiffness degradation is proposed and the relevant parameters are determined.
基金Project(2006AA09Z235) supported by the National High Technology Research and Development Program of ChinaProject(CX2009B003) supported by Hunan Provincial Innovation Foundation For Postgraduates,China
文摘Autonomous underwater vehicles (AUVs) navigating in complex sea conditions usually require a strong control system to keep the fastness and stability. The nonlinear trajectory tracking control system of a new AUV in complex sea conditions was presented. According to the theory of submarines,the six-DOF kinematic and dynamic models were decomposed into two mutually non-coupled vertical and horizontal plane subsystems. Then,different sliding mode control algorithms were used to study the trajectory tracking control. Because the yaw angle and yaw angle rate rather than the displacement of the new AUV can be measured directly on the horizontal plane,the sliding mode control algorithm combining cross track error method and line of sight method was used to fulfill its high-precision trajectory tracking control in the complex sea conditions. As the vertical displacement of the new AUV can be measured,in order to achieve the tracking of time-varying depth signal,a stable sliding mode controller was designed based on the single-input multi-state system,which took into account the characteristic of the hydroplane and the amplitude and rate constraints of the hydroplane angle. Moreover,the application of dynamic boundary layer can improve the robustness and control accuracy of the system. The computational results show that the designed sliding mode control systems of the horizontal and vertical planes can ensure the trajectory tracking performance and accuracy of the new AUV in complex sea conditions. The impacts of currents and waves on the sliding mode controller of the new AUV were analyzed qualitatively and quantitatively by comparing the trajectory tracking performance of the new AUV in different sea conditions,which provides an effective theoretical guidance and technical support for the control system design of the new AUV in real complex environment.
文摘The methods combined by test, field monitoring and theoretical analysis were adopted to do the systemic research on the rock mass from micro-structure to macro-deformation, and rheological model of Jinchuan rock mass was established to discuss the reasonable supporting time. Resuhs show that supporting after suitable stress and displacement release can benefit for the long-term stability of surrounding rock.
基金funded by National Natural Science of China (Grant Nos.41672362)Key Projects of Sichuan Provincial Department of Education (Grant No.16ZA0099)the State Key Laboratory of Geohazard Prevention & Geoenvironment Protection (Grant No.SKLGP2017Z011)
文摘Improvement of the fluidity and setting time of grouting materials has been recognized as an effective approach of seepage prevention in foundation works, and it is quite common to be used for handling severe leakages in complex ground conditions, such as loose, broken and fully fissured stratum. For the purposed of better meeting the engineering requirements, experimental studies were conducted in this study with focus on the nanocomposite grouting materials and the related controlled grouting technology. As compared with the commonly used silicate-sulpho-aluminate composite cement, which is characterized by relatively poor rheological property, quick setting time and low strength, the most suitable nano-material with proper reactants were selected intentionally to improve the mentioned attributes of composite cement. Due to the setting time and strength of the targeted cement slurry behaving with poor performance of harmonization to engineering construction problems, hydration synergistic effect of these composites were investigated in our experiments. Results showed that the properties of grouting materials, including initial fluidity, setting time, ideal right-angle thickening, and early strength and late strength were sufficient to produce an expected grouting application. It is therefore advocated that the refined grouting material could provide a better solution to fix grouting problems in complex ground cementing operations.
文摘Flexible conductive fibers are essential for wearable electronics and smart electronic textiles.However,in complex operating conditions,conductive fibers will inevitably fracture or damage.Herein,we have developed an elastic conductive self-healable fiber(C-SHF),of which the electrical and mechanical properties can efficiently heal in a wide operating range,including room temperature,underwater,and low temperature.This advantage can be owed to the combination of reversible covalent imine bond and disulfide bond,as well as the instantaneous self-healing ability of liquid metal.The C-SHF,with stretchability,conductivity stability,and universal self-healing properties,can be used as an electrical signal transmission line at high strain and under different operating conditions.Besides,C-SHF was assembled into a double-layer capacitor structure to construct a self-healable sensor,which can effectively respond to pressure as a wearable motion detector.
基金Supported by the National Natural Science Foundation of China(No.51205004,51475003)Beijing Natural Science Foundation(No.3152010)Beijing Education Committee Science and Technology Program(No.KM201510009004)
文摘The application of advanced high strength steel (AHSS) has an important significance in the development of the lightweight of automobile, but the parts made of AHSS usually have defects, such as fracture and large amount of springback, etc. In this paper, a model of multi-pass roll form- ing and springback process of AHSS is established with finite element software ABAQUS. Then a roll forming experiment is performed, and simulation and experimental results have been compared and analyzed. The model is established under complex contact conditions, including self-contact condi- tion. The results shows that during the process of sheet bending, large Mises stresses appear at ben- ding corners. The smaller the bending radius is, the larger the Mises stress and strain are. Thick- ness of sheet metal changes exceeds a certain limit, the differently if the bending radius is different. When the bending radius change tendency of the sheet thickness turns from increase to decrease.
基金National Key Technology Research and Development Program of China(No.2014BAF08B01)Collaborative Innovation Center of Major Machine Manufacturing in Liaoning,China
文摘Sixteen operating conditions were determined by the standards JIS-7105 and JIS-7106. The strength under complex operating conditions was calculated with HyperWorks and the strength analysis confirmed eight dangerous points of the metro bolster beam. Since the metro did not consider the impact of traffic lights and sudden road conditions, the load spectra at eight dangerous points were established by counting the running time,passenger flow,site layout,site quantity and turning situations. The fatigue life of the metro bolster beam was projected by the von Mises stress method and the critical plane method. The results of these two methods revealed that the maximum damage occurred at the dangerous point 7,and the fatigue life based on the critical plane method was shorter than that based on the von Mises stress method.Since the McDiarmid model considered the effect of the magnitude and direction of the normal stress and the amplitude of the shear stress,it is closer to the actual situations of the metro. Hence,the McDiarmid model based on the critical plane method is more reasonable,and the method of fatigue life prediction is also suitable to the metro bolster beam of other lines.
基金supported by the National Natural Science Foundation of China (Nos. 51772116 and 51972132)Program for HUST Academic Frontier Youth Team (2016QYTD04)。
文摘Owing to sluggish ionic mobility at low temperatures, supercapacitors, as well as other energy-storage devices, always suffer from severe capacity decay and even failure under extreme low-temperature circumstances. Solar-thermal-enabled self-heating promises an attractive approach to overcome this issue.Here, we report a unique H-bonding charge-transfer complex with a high photothermal conversion efficiency of 79.5% at 405 nm based on chloranilic acid and albendazole. Integrated with a microsupercapacitor, the chloranilic acid-albendazole complex(CAC) film prompts an apparent temperature increase of 22.7 °C under 1 sun illumination at-32.6 °C, effectively elevating the working temperature of devices.As a result, the rate capability of the microsupercapacitor has been significantly improved with a 17-fold increase in capacitance at a current density of 60 μA cm^(-2), leading to outstanding low-temperature performances. Importantly, the integrated device is capable of working at a low temperature of-30 °C in the open air, which demonstrates the potential of CAC in practical applications for low-temperature ultracapacitive energy-storage devices.
文摘Based on an example of a project in Tangshan, the high-rise buildings are built in karst area and mined out affected area which is treated by high pressure grouting, and foundation is adopted the form of pile raft foundation. By long-term measured settlement of high-rise buildings, It is found that foundation settlement is linear increase with the increase of load before the building is roof-sealed, and the settlement increases slowly after the building is roof-sealed, and the curve tends to converge, and the foundation consolidation is completed. The settlement of the foundation is about 80% - 84% of the total settlement before the building is roof-sealed.Three layer BP neural network model is used to predict the settlement in the karst area and mined affected area.Compared with the measured data, the relative difference of the prediction is 0.91% - 2.08% in the karst area, and is 0.95% - 2.11% in mined affected area. The prediction results of high precision can meet the engineering requirements.
基金Supported by National Natural Science Foundation of China (No. 50639010, 50779003 and 50909014)
文摘There exists a critical cyclic stress ratio when sand or clay is subjected to cyclic loading. It is an index dis-tinguishing stable state or failure state. The soil static and dynamic universal triaxial and torsional shear apparatus de-veloped by Dalian University of Technology in China was employed to perform different types of tests on saturated soft marine clay in the Yangtze estuary. Undisturbed samples were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consoli-dation parameters. The effects of initial orientation angle of major principal stress, initial ratio of deviatoric stress,initial coefficient of intermediate principal stress and stress mode of cyclic shear on the critical cyclic stress ratio wereinvestigated. It is found that the critical cyclic stress ratio decreases significantly with increasing initial orientation angle of major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientationangle of major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate prin-cipal stress is less evident. Under the same consolidation condition, the critical cyclic stress ratio from the cyclic cou-pling shear test is lower than that from the cyclic torsional shear test, indicating that the stress mode of cyclic shear has an obvious effect on the critical cyclic stress ratio. The main reason is that the continuous rotation in principal stressdirections during cyclic coupling shear damages the original structure of soil more than the cyclic torsional shear does.
文摘Business growth and development are similar to a selforganization evolution system. This paper intends to explore the context, drive and process within enterprise self-organization evolution from a conceptual perspective. And an enterprise evolution model can be applied on the basis of ecological logistic equations to approach the elementary process and the growth stage of organization. Moreover,the influence of diverse variable on the evolution of enterprise growth is discussed. At last, the study concludes that new structures and functions can emerge within organizations and enterprises,which contribute to transformation and upgrade during their self-organization evolution.
文摘Complex conditional statement is one of the bad code smells, which affects the quality of the code and design of software. In the proposed approach, two commonly-used design patterns for handling complex conditional statements are selected, and they are the factory method pattern and the strategy pattem. Two pattern-directed refactoring approaches based on the two design patterns are proposed. Each approach contains a refactoring opportunities identification algorithm and an automated refactoring algorithm. After parsing the abstract syntax tree generated from source code, the refactoring opportunities are identified effectively and automatically. Then, for candidate code, refactoring algorithms are executed automatically, which are used to simplify or remove complex conditional statements. By empirical analysis and quality assessment, the code after refactoring has better maintainability and extensibility, and the proposed approach for automated pattern-directed refactoring succeeds to reduce code size and complexity of classes.
文摘Increase in requirement of hydrosulphuric water for improvement of the population set the task of identification of places of their possible congestion for hydrogeological service. Earlier detection of such congestions was accidental at well-drilling of different function. Therefore, development of new methodical approaches of search and allocation of perspective zones of their formation was required. It was for this purpose necessary to study in what conditions and what factors have an impact on formation of underground hydrosulphuric water. So far, definition of communication attempts only with separate geochemical signs was known. Results of studying of influence on formations of hydrosulphuric water of such factors as lithologic and facial in combination with oil-and-gas content, the geological and structural and hydrodynamic mode are given in this work. It is established that the main sign for formation of hydrosulphuric water is existence of evaporite thickness and hydrocarbon congestions. Besides, it is shown that small depth (up to 2 km) of their bedding has to be an indispensable condition and existence of explosive violation on which there has to be a water infiltration (a geological and structural factor). In the Surkhandarya region, the hydrodynamic mode caused by inclined bedding of aquifers was also one of essential factors. Active water is an exchange process with washing away (oxidation) sulfate of the containing thicknesses and subsequently, its restoration in interaction with hydrocarbons with formation of hydrosulphuric water is described. The technique is developed and the expected card of perspective zones of formation of hydrosulphuric water is constructed.
基金supported by Aeronautical Science Foundation of China(Grant No.20081651025)
文摘The existing researches on singularity of parallel mechanism are mostly limited to the property and regularity of singularity locus and there is no further research into the geometric relationship between uncontrolled kinematic screw and parallel mechanism in singularity. A 3UPS-S parallel mechanism is presented which fulfils 3-DOF in rotation. The regularity of nutation angle singularity is analyzed based on the Jacobian matrix, and the singularity surface of 3UPS-S parallel mechanisms is obtained. By applying the concept of reciprocal product in screw theory, the singular kinematic screw is derived when 3UPS-S parallel mechanism is in singularity. The geometric relationship between singular kinematic screw and singular configuration of 3UPS-S parallel mechanism is investigated by using programs in MATLAB. It is revealed that there are two kinds of situation. Firstly, the three limbs of 3UPS-S parallel mechanism intersect the singular kinematic screw in space simultaneously; Secondly, two limbs cross the singular kinematic screw while the third limb parallels with that screw. It is concluded that the nutation angle singularity of 3UPS-S parallel mechanism belongs to the singular linear complexes. This paper sheds light into and clarifies the geometric relationship between singular kinematic screw and singular configuration of 3UPS-S parallel mechanism.