Expo 2010 Shanghai China was a successful, splendid, and unforgettable event, leaving us with valuable experi- ences. The visitor flow pattern of the Expo is investigated in this paper. The Hurst exponent, the mean va...Expo 2010 Shanghai China was a successful, splendid, and unforgettable event, leaving us with valuable experi- ences. The visitor flow pattern of the Expo is investigated in this paper. The Hurst exponent, the mean value, and the standard deviation of visitor volume indicate that the visitor flow is fractal with long-term stability and correlation as well as obvious fluctuation in a short period. Then the time series of visitor volume is converted into a complex network by using the visibility algorithm. It can be inferred from the topological properties of the visibility graph that the network is scale-free, small-world, and hierarchically constructed, confirming that the time series are fractal and a close relationship exists among the visitor volumes on different days. Furthermore, it is inevitable that will be some extreme visitor volumes in the original visitor flow, and these extreme points may appear in a group to a great extent. All these properties are closely related to the feature of the complex network. Finally, the revised linear regression is performed to forecast the next-day visitor volume based on the previous 10-day data.展开更多
We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments f...We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas-liquid flow patterns.展开更多
This paper examines the noise and rotation resistance capacity of Hopfield Neural Network (HNN) given four corrupted traffic sign images. In the study, Signal-to-Noise Ratio (SNR), recall rate and pattern complexi...This paper examines the noise and rotation resistance capacity of Hopfield Neural Network (HNN) given four corrupted traffic sign images. In the study, Signal-to-Noise Ratio (SNR), recall rate and pattern complexity are defined and employed to evaluate the recall performance. The experimental results indicate that the HNN possesses significant recall capacity against the strong noise corruption, and certain restoring competence to the rotation. It is also found that combining noise with rotation does not further challenge the HNN corruption resistance capability as the noise or rotation alone does.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 70871082)the Shanghai Leading Academic Discipline Project, China (Grant No. S30504)the Science and Technology Innovation Foundation of Shanxi Agricultural University, China (Grant No. 201208)
文摘Expo 2010 Shanghai China was a successful, splendid, and unforgettable event, leaving us with valuable experi- ences. The visitor flow pattern of the Expo is investigated in this paper. The Hurst exponent, the mean value, and the standard deviation of visitor volume indicate that the visitor flow is fractal with long-term stability and correlation as well as obvious fluctuation in a short period. Then the time series of visitor volume is converted into a complex network by using the visibility algorithm. It can be inferred from the topological properties of the visibility graph that the network is scale-free, small-world, and hierarchically constructed, confirming that the time series are fractal and a close relationship exists among the visitor volumes on different days. Furthermore, it is inevitable that will be some extreme visitor volumes in the original visitor flow, and these extreme points may appear in a group to a great extent. All these properties are closely related to the feature of the complex network. Finally, the revised linear regression is performed to forecast the next-day visitor volume based on the previous 10-day data.
基金Project supported by the National Natural Science Foundation of China ( Grant Nos. 61104148, 41174109, and 50974095)the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX05020-006)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110032120088)
文摘We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas-liquid flow patterns.
基金Supported by the Natural Science Foundation of Zhejiang Province(No.2010A610105)
文摘This paper examines the noise and rotation resistance capacity of Hopfield Neural Network (HNN) given four corrupted traffic sign images. In the study, Signal-to-Noise Ratio (SNR), recall rate and pattern complexity are defined and employed to evaluate the recall performance. The experimental results indicate that the HNN possesses significant recall capacity against the strong noise corruption, and certain restoring competence to the rotation. It is also found that combining noise with rotation does not further challenge the HNN corruption resistance capability as the noise or rotation alone does.