By simulating the electron paramagnetic resonance (EPR) and optical spectra on the basis of the 120 × 120 complete energy matrix, this paper determines the local lattice structure parameters R1 and R2 for MCl...By simulating the electron paramagnetic resonance (EPR) and optical spectra on the basis of the 120 × 120 complete energy matrix, this paper determines the local lattice structure parameters R1 and R2 for MCl:V2+ (M=Na, K, Rb) systems at 77K, 195 K and RT (room temperature 295 K or 302 K), respectively. The theoretical results indicate that there exists a compressed distortion in MCl:V2+ systems. Meanwhile, it finds that the structure parameters R1, R2 and |△R|( = R1 - R2) increase with the rising temperature. Subsequently, from the analysis it concludes that the relation of EPR parameter D vs. △R is approximately linear. Finally, the effects of orbital reduction factor k on the g factors for the three systems have been discussed.展开更多
Electric load movement forecast is increasingly importance for the industry.This study addresses the load movement forecast modeling based on complex matrix interpolation of the S-transform(ST).In complex matrix of ti...Electric load movement forecast is increasingly importance for the industry.This study addresses the load movement forecast modeling based on complex matrix interpolation of the S-transform(ST).In complex matrix of time-frequency representation of the ST,each row follows conjugate symmetric property and each column appears a certain degree of similarity.Based on these characteristics,a complex matrix interpolation method for the time-frequency representation of the ST is proposed to interpolate each row of the complex matrix based on the conjugate symmetric property,and then to perform nearestneighbor interpolation on each column.Then with periodic extension for daily and yearly electric load movement,a forecast model employing the complex matrix interpolation of the ST is introduced.The forecast approach is applied to predict daily load movement of the European Network on Intelligent Technologies(EUNITE)load dataset and annual electric load movement of State Gird Corporation of China and its branches in 2005 and 2006.Result analysis indicates workability and effectiveness of the proposed method.展开更多
This paper proposes a design and fine-tuning method for mixed electric and magnetic coupling filters.It derives the quantitative relationship between the coupling coefficients(electric and magnetic coupling,i.e.,EC an...This paper proposes a design and fine-tuning method for mixed electric and magnetic coupling filters.It derives the quantitative relationship between the coupling coefficients(electric and magnetic coupling,i.e.,EC and MC)and the linear coefficients of frequencydependent coupling for the first time.Different from the parameter extraction technique using the bandpass circuit model,the proposed approach explicitly relatesEC and MC to the coupling matrix model.This paper provides a general theoretic framework for computer-aided design and tuning of a mixed electric and magnetic coupling filter based on coupling matrices.An example of a 7th-order coaxial combline filter design is given in the paper,verifying the practical value of the approach.展开更多
In this paper, a complex parameter is employed in the Hermitian and skew-Hermitian splitting (HSS) method (Bai, Golub and Ng: SIAM J. Matrix Anal. Appl., 24(2003), 603-626) for solving the complex linear system...In this paper, a complex parameter is employed in the Hermitian and skew-Hermitian splitting (HSS) method (Bai, Golub and Ng: SIAM J. Matrix Anal. Appl., 24(2003), 603-626) for solving the complex linear system Ax = f. The convergence of the resulting method is proved when the spectrum of the matrix A lie in the right upper (or lower) part of the complex plane. We also derive an upper bound of the spectral radius of the HSS iteration matrix, and a estimated optimal parameter a (denoted by a^st) of this upper bound is presented. Numerical experiments on two modified model problems show that the HSS method with a est has a smaller spectral radius than that with the real parameter which minimizes the corresponding upper hound. In particular, for the 'dominant' imaginary part of the matrix A, this improvement is considerable. We also test the GMRES method preconditioned by the HSS preconditioning matrix with our parameter a est.展开更多
Echo state network (ESN) has become one of the most popular recurrent neural networks (RNN) for its good prediction performance of non-linear time series and simple training process. But several problems still pre...Echo state network (ESN) has become one of the most popular recurrent neural networks (RNN) for its good prediction performance of non-linear time series and simple training process. But several problems still prevent ESN from becoming a widely used tool. The most prominent problem is its high complexity with lots of random parameters. Aiming at this problem, a minimum complexity ESN model (MCESN) was proposed. In this paper, we proposed a new wavelet minimum complexity ESN model (WMCESN) to improve the prediction accuracy and increase the practical applicability. Our new model inherits the characters of minimum complexity ESN model using the fixed parameters and simple circle topology. We injected wavelet neurons to replace the original neurons in internal reservoir and designed a wavelet parameter matrix to reduce the computing time. By using different datasets, our new model performed better than the minimum complexity ESN model with normal neurons, but only utilized tiny time cost. We also used our own packets of transmission control protocol (TCP) and user datagram protocol (UDP) dataset to prove that our model can deal with the data packet bit prediction problem well.展开更多
Utilizing the Young’s double slits and Mach-Zehnder interferometer, we proposed an experimental method to measure the generalized Stokes parameters of a radially polarized random electromagnetic beam. After the parti...Utilizing the Young’s double slits and Mach-Zehnder interferometer, we proposed an experimental method to measure the generalized Stokes parameters of a radially polarized random electromagnetic beam. After the partially coherent beam propagating through the Young’s double slits, the interference fringe is obtained by the help of a Mach-Zehnder interferometer consisting of apertures, quarter-wave plates and polarizers. The electric cross-spectral density matrix is detected by the coherence degree of interference fringe and the density of each single slit. The generalized Stokes parameters can be obtained from the electric cross-spectral density matrix. This experiment measures the generalized Stokes parameters of the random electromagnetic beam successfully. The results show that the spectral degree of coherence for copolarized cases (xx and yy) is similar with that for cross-polaried cases (xy and yx) for the radially polarized random electromagnetic beam. This method will help us determine the change of the polarization and coherence of the light in propagation by detecting the change of the generalized Stokes parameters.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10774103)the Doctoral Education Fund of the Education Ministry of China (Grant No 20050610011)
文摘By simulating the electron paramagnetic resonance (EPR) and optical spectra on the basis of the 120 × 120 complete energy matrix, this paper determines the local lattice structure parameters R1 and R2 for MCl:V2+ (M=Na, K, Rb) systems at 77K, 195 K and RT (room temperature 295 K or 302 K), respectively. The theoretical results indicate that there exists a compressed distortion in MCl:V2+ systems. Meanwhile, it finds that the structure parameters R1, R2 and |△R|( = R1 - R2) increase with the rising temperature. Subsequently, from the analysis it concludes that the relation of EPR parameter D vs. △R is approximately linear. Finally, the effects of orbital reduction factor k on the g factors for the three systems have been discussed.
基金supported by the Scientific Research Fund of Hunan Provin-cial Science and Technology Department(2013GK3090)the research fund of Hunan University of Science and Technology(E50811)。
文摘Electric load movement forecast is increasingly importance for the industry.This study addresses the load movement forecast modeling based on complex matrix interpolation of the S-transform(ST).In complex matrix of time-frequency representation of the ST,each row follows conjugate symmetric property and each column appears a certain degree of similarity.Based on these characteristics,a complex matrix interpolation method for the time-frequency representation of the ST is proposed to interpolate each row of the complex matrix based on the conjugate symmetric property,and then to perform nearestneighbor interpolation on each column.Then with periodic extension for daily and yearly electric load movement,a forecast model employing the complex matrix interpolation of the ST is introduced.The forecast approach is applied to predict daily load movement of the European Network on Intelligent Technologies(EUNITE)load dataset and annual electric load movement of State Gird Corporation of China and its branches in 2005 and 2006.Result analysis indicates workability and effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China under Grant No.62001339.
文摘This paper proposes a design and fine-tuning method for mixed electric and magnetic coupling filters.It derives the quantitative relationship between the coupling coefficients(electric and magnetic coupling,i.e.,EC and MC)and the linear coefficients of frequencydependent coupling for the first time.Different from the parameter extraction technique using the bandpass circuit model,the proposed approach explicitly relatesEC and MC to the coupling matrix model.This paper provides a general theoretic framework for computer-aided design and tuning of a mixed electric and magnetic coupling filter based on coupling matrices.An example of a 7th-order coaxial combline filter design is given in the paper,verifying the practical value of the approach.
文摘In this paper, a complex parameter is employed in the Hermitian and skew-Hermitian splitting (HSS) method (Bai, Golub and Ng: SIAM J. Matrix Anal. Appl., 24(2003), 603-626) for solving the complex linear system Ax = f. The convergence of the resulting method is proved when the spectrum of the matrix A lie in the right upper (or lower) part of the complex plane. We also derive an upper bound of the spectral radius of the HSS iteration matrix, and a estimated optimal parameter a (denoted by a^st) of this upper bound is presented. Numerical experiments on two modified model problems show that the HSS method with a est has a smaller spectral radius than that with the real parameter which minimizes the corresponding upper hound. In particular, for the 'dominant' imaginary part of the matrix A, this improvement is considerable. We also test the GMRES method preconditioned by the HSS preconditioning matrix with our parameter a est.
基金supported by the National Natural Science Foundation of China (61201153)the National Basic Research Program of China (2012CB315805)the National Key Science and Technology Projects (2010ZX03004-002-02)
文摘Echo state network (ESN) has become one of the most popular recurrent neural networks (RNN) for its good prediction performance of non-linear time series and simple training process. But several problems still prevent ESN from becoming a widely used tool. The most prominent problem is its high complexity with lots of random parameters. Aiming at this problem, a minimum complexity ESN model (MCESN) was proposed. In this paper, we proposed a new wavelet minimum complexity ESN model (WMCESN) to improve the prediction accuracy and increase the practical applicability. Our new model inherits the characters of minimum complexity ESN model using the fixed parameters and simple circle topology. We injected wavelet neurons to replace the original neurons in internal reservoir and designed a wavelet parameter matrix to reduce the computing time. By using different datasets, our new model performed better than the minimum complexity ESN model with normal neurons, but only utilized tiny time cost. We also used our own packets of transmission control protocol (TCP) and user datagram protocol (UDP) dataset to prove that our model can deal with the data packet bit prediction problem well.
文摘Utilizing the Young’s double slits and Mach-Zehnder interferometer, we proposed an experimental method to measure the generalized Stokes parameters of a radially polarized random electromagnetic beam. After the partially coherent beam propagating through the Young’s double slits, the interference fringe is obtained by the help of a Mach-Zehnder interferometer consisting of apertures, quarter-wave plates and polarizers. The electric cross-spectral density matrix is detected by the coherence degree of interference fringe and the density of each single slit. The generalized Stokes parameters can be obtained from the electric cross-spectral density matrix. This experiment measures the generalized Stokes parameters of the random electromagnetic beam successfully. The results show that the spectral degree of coherence for copolarized cases (xx and yy) is similar with that for cross-polaried cases (xy and yx) for the radially polarized random electromagnetic beam. This method will help us determine the change of the polarization and coherence of the light in propagation by detecting the change of the generalized Stokes parameters.