期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Complex-Valued Convolutional Neural Networks Design and Its Application on UAV DOA Estimation in Urban Environments 被引量:2
1
作者 Bai Shi Xian Ma +3 位作者 Wei Zhang Huaizong Shao Qingjiang Shi Jingran Lin 《Journal of Communications and Information Networks》 CSCD 2020年第2期130-137,共8页
Direction-of-arrival(DOA)estimation is an important task in many unmanned aerial vehicle(UAV)applications.However,the complicated electromagnetic wave propagation in urban environments substantially deteriorates the p... Direction-of-arrival(DOA)estimation is an important task in many unmanned aerial vehicle(UAV)applications.However,the complicated electromagnetic wave propagation in urban environments substantially deteriorates the performance of many conventional model-driven DOA estimation approaches.To alleviate this,a deep learning based DOA estimation approach is proposed in this paper.Specifically,a complex-valued convolutional neural network(CCNN)is designed to fit the electromagnetic UAV signal with complex envelope better.In the CCNN design,we construct some mapping functions using quantum probabilities,and further analyze some factors which may impact the convergence of complex-valued neural networks.Numerical simulations show that the proposed CCNN converges faster than the real convolutional neural network,and the DOA estimation result is more accurate and robust. 展开更多
关键词 direction-of-arrival(DOA)estimation complex-valued convolutional neural network(CCNN) unmanned aerial vehicle(UAV)
原文传递
基于复值卷积神经网络样本精选的极化SAR图像弱监督分类方法 被引量:4
2
作者 秦先祥 余旺盛 +2 位作者 王鹏 陈天平 邹焕新 《雷达学报(中英文)》 CSCD 北大核心 2020年第3期525-538,共14页
针对物体框标注样本包含大量异质成分的问题,该文提出了一种基于复值卷积神经网络(CV-CNN)样本精选的极化SAR(PolSAR)图像弱监督分类方法。该方法首先采用CV-CNN对物体框标注样本进行迭代精选,并同时训练出可直接用于分类的CV-CNN。然... 针对物体框标注样本包含大量异质成分的问题,该文提出了一种基于复值卷积神经网络(CV-CNN)样本精选的极化SAR(PolSAR)图像弱监督分类方法。该方法首先采用CV-CNN对物体框标注样本进行迭代精选,并同时训练出可直接用于分类的CV-CNN。然后利用所训练的CV-CNN完成极化SAR图像的分类。基于3幅实测极化SAR图像的实验结果表明,该文方法能够有效剔除异质样本,与采用原始物体框标注样本的传统全监督分类方法相比可以获得明显更优的分类结果,并且该方法采用CV-CNN比采用经典的支持矢量机(SVM)或Wishart分类器性能更优。 展开更多
关键词 极化SAR 弱监督分类 复值卷积神经网络 样本精选
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部