The adsorption kinetics of methylene blue from aqueous solutions on purified palygorskite was investigated. The kinetics data related to the adsorption of methylene blue from aqueous solutions are in good agreement wi...The adsorption kinetics of methylene blue from aqueous solutions on purified palygorskite was investigated. The kinetics data related to the adsorption of methylene blue from aqueous solutions are in good agreement with the pseudo-second order equation in ranges of initial concentration of 120-210 mg/L, oscillation speed of 100-200 r/min and temperature of 298-328K. The experimental results show that methylene blue is only adsorbed onto the external surface of purified palygorskite, and the apparent adsorption activation energy is 13.92 kJ/mol. The relatively low apparent adsorption activation energy suggests that the adsorption of methylene blue involves in not only a chemical, but also a physical adsorption process, and it is controlled by the combination of chemical adsorption and fiquid-film diffusion.展开更多
In this research miswak leaves, agriculture wastes, available in large quantity in Saudi Arabia, was used as low-cost adsorbent for removing methylene blue (MB) dye. Equilibrium behavior of miswak leaves was investiga...In this research miswak leaves, agriculture wastes, available in large quantity in Saudi Arabia, was used as low-cost adsorbent for removing methylene blue (MB) dye. Equilibrium behavior of miswak leaves was investigated by performing batch adsorption experiments. The effects of [MB] 0, pH, contact time and adsorbent dose were evaluated. An alkaline pH (10.6) was favorable to the adsorption of MB dye. Adsorption isotherm models, Langmuir, Freundlich and Temkin were used to simulate the equilibrium data. Langmuir equation was found to have the highest value of R2 compared with other models. Furthermore, it was found that miswak leaves have a high adsorptive capacity towards MB dye (200 mg/g) and show favorable adsorption of MB dye with separation factor (RL < 1). In addition, pseudo-first- order, pseudo-second order and intra-particle diffusion were used to study the kinetics of MB adsorption onto miswak leaves. Adsorption process undergoes pseudo-second order kinetic as proved by the high value of R2 and the low value of sum of squared error (SSE percentage). Results indicated that intra-particle diffusion is not the limiting step, and the adsorption process is spontaneous as indicated by the negative value of the .展开更多
Mango peels,which constitute a significant proportion of urban waste,have been modified with phosphoric acid for use as a biosorbent in the removal of methylene blue from wastewater.The characterization of the obtaine...Mango peels,which constitute a significant proportion of urban waste,have been modified with phosphoric acid for use as a biosorbent in the removal of methylene blue from wastewater.The characterization of the obtained biosorbent showed that cellulose is the primary constituent followed by lignin and hemicellulose.The high water content and the low value of ash content indicate that the studied biosorbent is a porous material containing a low proportion of inorganic,inert,amorphous and unusable part for biosorbent production.The zero charge point(pHpzc)assessment showed that the overall surface charge of the biosorbent is negative and therefore plays a key role in the adsorption process.The adsorption of methylene blue by mango peels biosorbent is a two-step process:a rapid first step in which over 90%methylene blue is removed in less than 10 min followed by a slowdown of the adsorption rate when approaching the adsorption equilibrium.Among pseudo-first,pseudo-second order and intraparticle diffusion kinetics models studies,pseudo-second order was the best applicable to describe methylene blue adsorption,suggesting a two-step mechanism:the transfer of methylene blue molecules from the solution to the mango peels biosorbent surface,followed by the interaction between adsorbates and surface.The equilibrium adsorption data were analyzed by Langmuir,Freundlich and Temkin isotherms models.Among them,Langmuir was the best model to describe adsorption,indicating the existence of homogeneous distribution of adsorption sites on mango peels biosorbent surface and a mono-layer adsorption of methylene blue molecules.The low value of Temkin’s constant B relative to the interaction energy between methylene blue molecules and the surface of the biosorbent shows that the adsorption involved is a physisorption process.展开更多
Kinetics of photocatalytic degradation of methylene blue(MB) over Ca Ti O3 was studied. Effects of the solution p H, the MB concentration, the Ca Ti O3 dosage, and the type of light source on photocatalytic degradatio...Kinetics of photocatalytic degradation of methylene blue(MB) over Ca Ti O3 was studied. Effects of the solution p H, the MB concentration, the Ca Ti O3 dosage, and the type of light source on photocatalytic degradation rate of MB over Ca Ti O3 were investigated in detail. The results show that photocatalytic degradation of MB over Ca Ti O3 followed the first-order reaction. The apparent rate constant(kobs) of MB significantly increased with increasing solution p H while it greatly decreased with increasing MB concentration. The kobs of MB increased with increasing Ca Ti O3 dosage from 0.05 to 0.1 g, whereas it slightly decreased with increasing Ca Ti O3 dosage in the range of 0.1-0.4 g. The kobs of MB under UV-visible light irradiation was larger by factors of 2.2 than that under visible light irradiation. The kobs of MB was(4.8±0.3)×10-1h-1 under optimal conditions with the solution p H of 11, the MB concentration of 1 ppm, the Ca Ti O3 dosage of 0.1 g, and UV-visible light irradiation.展开更多
Tea waste/CuFe2O4 (TW/C) composite was prepared by co-precipitation method. The TW and TW/C samples are characterized by FTIR, XRD, SEM and N2 physical adsorption. The results showed that specific surface area of 350 ...Tea waste/CuFe2O4 (TW/C) composite was prepared by co-precipitation method. The TW and TW/C samples are characterized by FTIR, XRD, SEM and N2 physical adsorption. The results showed that specific surface area of 350 and 570 m2·g?1 for TW and TW/C, respectively. The average pore size of TW/C is ca. 100 nm. Adsorption of methylen blue onto TW/C composite has been studied. Measurements are performed at various contact time, pH and adsorbent dosage. The adsorption kinetics of methylen blue (MB) could be described by the pseudo-second order kinetic model. The adsorption isotherms are described by means of Langmuir and Freundlich isotherms. It was found that the Freundlich model fit better than the Langmuir model. The thermodynamic constants of the adsorption were calculated to predict the nature of adsorption. The values of thermodynamic parameters indicate that a spontaneous and endothermic process was occurred.展开更多
Removal of Methylene Blue (MB) and Crystal Violet (CV) dyes from monocomponent and binary aqueous solutions by water hyacinth-E. Crassipes roots fixed on alginate (a low-cost adsorbent) has been investigated. The exte...Removal of Methylene Blue (MB) and Crystal Violet (CV) dyes from monocomponent and binary aqueous solutions by water hyacinth-E. Crassipes roots fixed on alginate (a low-cost adsorbent) has been investigated. The extent of adsorption was evaluated as a function of solution pH, initial dye concentration, and bead biomass loading. Kinetic sorption data were analysed by widely used models: pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models. The results showed that pseudo-second-order model better described the biosorption experimental data than the pseudo-first-order kinetic model for both dyes, whilst the Elovich model fitted the biosorption experimental data at lower dye concentrations. The intraparticle diffusion model indicated that sorption of CV and MB was characterized by rapid surface adsorption coupled with slow film diffusion process at higher initial dye concentration and at all initial bead biomass loading. The range of mean free energy values confirmed physical adsorption as the mechanism for dye removal from solution.展开更多
The photocatalytic performance of mechano-thermally synthesized Fe/FeS nanostructures formed from micron-sized starting materials was compared with that of a thermally synthesized nanostructure with nano-sized precurs...The photocatalytic performance of mechano-thermally synthesized Fe/FeS nanostructures formed from micron-sized starting materials was compared with that of a thermally synthesized nanostructure with nano-sized precursors in this paper. The properties of as-synthesized materials were studied by X-ray diffraction(XRD), transmission electron microscopy(TEM), vibrating sample magnetometry(VSM), diffuse reflectance spectroscopy(DRS), and ultraviolet–visible(UV-Vis) spectroscopy. The effects of irradiation time, methylene blue(MB) concentration, catalyst dosage, and p H value upon the degradation of MB were studied. Magnetic properties of the samples showed that both as-synthesized Fe/FeS photocatalysts are magnetically recoverable, eliminating the need for conventional filtration steps. Degradation of 5 ppm of the MB solution by mechano-thermally synthesized Fe/FeS with a photocatalyst dosage of 1 kg/m^3 at pH 11 can reach 96% after 12 ks irradiation under visible light. The photocatalytic efficiency is higher in alkaline solution. The kinetics of photocatalytic degradation in both samples is controlled by a first-order reaction. However, the rate-constant value in the thermally synthesized Fe/FeS photocatalyst sample is only 1.5 times greater than that of the mechano-thermally synthesized one.展开更多
V-doped TiO2 nanoparticles(NPs) as dye adsorbents are synthesized by the co-precipitation method and characterized by X-ray powder diffraction, transmission electron microscope, N2 adsorption at 77 K, and X-ray phot...V-doped TiO2 nanoparticles(NPs) as dye adsorbents are synthesized by the co-precipitation method and characterized by X-ray powder diffraction, transmission electron microscope, N2 adsorption at 77 K, and X-ray photoelectron spectroscopy. The adsorption of methylene blue(MB) on the V-doped TiO2 NPs is studied in detail by varying the calcination temperature and V doping amount of the adsorbent, adsorbate concentration, adsorbent dosage, agitation rate, reaction temperature, and p H. The comparison of dye adsorption on V-doped TiO2 and parent TiO2 demonstrates that the adsorptive activity of TiO2 can be improved by V doping. The enhanced adsorptive performance can be attributed to the tremendous changes in texture, structure, and surface morphology of adsorbent. The adsorption kinetic analysis shows that the adsorption follows the pseudo-second order kinetics. The apparent activation energy for adsorption is calculated by Arrhenius formula to be 37.6 k J·mol-1, indicating that the adsorption is controlled by both of the diffusion and interfacial adsorption steps. The adsorption data are analyzed using Langmuir and Freundlich isotherms and the results indicate that the Langmuir model provides better correlation of the experimental data. The results conclusively show that the adsorption of MB is a spontaneous behavior and endothermic reaction with the ΔH value of 17.60 k J·mol-1.展开更多
A series of chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites were synthesized and used as adsorbents for the investigation of the effect of process parameters such as vermiculite content, pH of dye sol...A series of chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites were synthesized and used as adsorbents for the investigation of the effect of process parameters such as vermiculite content, pH of dye solution, contact time, initial concentration of dye solution, temperature, ionic strength and concentration of surfactant sodium dodecyl sulfate on the removal of Methylene Blue (MB) from aqueous solution. The results showed that the adsorption capacity for dye increased with increasing pH, contact time and initial dye concentration, but decreased with increasing temperature, ionic strength and sodium dodecyl sulfate concentration in the present of the surfactant. The adsorption kinetics of MB onto the hydrogel composite followed pseudo second-order kinetics and the adsorption equilibrium data obeyed Langmuir isotherm. By introducing 10 wt.% vermiculite into chitosan-g-poly (acrylic acid) polymeric network, the obtaining hydrogel composite showed the highest adsorption capacity for MB, and then could be regarded as a potential adsorbent for cationic dye removal in a wastewater treatment process.展开更多
The authors investigated the catalytic activity of TiO2 for methylene blue(MB) degradation under solar light.The reaction parameters such as reaction time,TiO2 content,temperature,pH,MB concentration and light irrad...The authors investigated the catalytic activity of TiO2 for methylene blue(MB) degradation under solar light.The reaction parameters such as reaction time,TiO2 content,temperature,pH,MB concentration and light irradiation were in attention.Then,the experimental data was analyzed to investigate the adsorption order and adsorption model.The results indicate that the optimum conditions for the removal of MB are a TiO2 content of 0.5 g/L,0.50 mg/L MB solution,a temperature of 30 ℃ and reaction time of 60 min.It was found that the amount of MB removal was decreased when the pH and temperature increased.This suggests that the removal process is exothermic.However,the solar light irradiation plays a vital role in enhancing the removal amount of MB.In the dark reaction,the ability of TiO2 to remove MB was increased when the pH increased.The kinetics studies confirm that the adsorption of MB is the Pseudo-second-order.And the adsorption model was fitted with the Freundlich isotherm.展开更多
SERS technique wae used to study the chemiesorption kinetics of Methylene Blue (MB) on the HNO3-etched silver surface. The adsorption kinetic parameters were deduced from different vibrational modes at a low concentra...SERS technique wae used to study the chemiesorption kinetics of Methylene Blue (MB) on the HNO3-etched silver surface. The adsorption kinetic parameters were deduced from different vibrational modes at a low concentration of 3.5 × 10?6 mol/L, and it showed that MB adsorbed uniformly (monolayerly) on silver surface. However, the adsorptive behavior turned anomalous at relatively higher concentrations and a possible explanation was suggested. In addition, the influence of Cl? ions on the adsorption states of MB was investigated, and it was shown that MB molecules, adsorbed on the silver surface, tended to transform the “lying-down” state to the “end - on” 4 state after CI? ions were added.展开更多
The present work was done in order to develop and find out suitable conversion methods for coconut husk wastes into value-added products. It is well-known that coconuts husk waste is hydrophobic therefore ethanol with...The present work was done in order to develop and find out suitable conversion methods for coconut husk wastes into value-added products. It is well-known that coconuts husk waste is hydrophobic therefore ethanol with different doses was used as a surfactant to enhance the removal efficiency. Treated samples at different adsorbent amounts, sintering temperatures & sintering time, stirring time, pH, and solution temperatures for color removal of Methylene Blue (MB) & Rhodamine B (RhB) and ammonium concentration were evaluated by using UV-Visible Spectroscopy. At 300°C, results showed complete removal for MB and more than 75% for RhB, whereas removal of ammonium ion reached around 52% when sintering product from husk waste was used. Further investigation was carried out for ammonium ion to understand the desorption kinetic behaviors and isotherm models. Kinetics indicated that desorption of ammonium ion followed pseudo-first order equation. Adsorption thermodynamic parameters such as ΔG, ΔH, and ΔS followed Van’t Hoff plot for adsorption and found to be negative which indicated that the adsorption process for ammonium onto coconut husk was physical, spontaneous and exothermic.展开更多
Water pollution caused by industrial dyes has become a severe problem in the modern world. Biosorbents can be used in an eco-friendly manner to remove industrial dyes. In this study, five biosorbents were selected: pa...Water pollution caused by industrial dyes has become a severe problem in the modern world. Biosorbents can be used in an eco-friendly manner to remove industrial dyes. In this study, five biosorbents were selected: palmyrah sprout casing (PSC), manioc peel, lime peel, king coconut husk, and coconut kernel. Batch adsorption experiments were conducted to identify the best biosorbent with the highest ability to adsorb methylene blue (MB) from wastewater. The detailed mechanisms of PSC used in the adsorptive removal of MB in aqueous phase were investigated. Of the five biosorbents, PSC exhibited the best removal performance with an adsorption capacity at equilibrium (qe) of 27.67 mg/g. The qe values of lime peel, king coconut husk, manioc peel, and coconut kernel were 24.25 mg/g, 15.29 mg/g, 10.84 mg/g, and 7.06 mg/g, respectively. To explain the mechanisms of MB adsorption with the selected biosorbents, the Fourier transform infrared (FTIR) spectrometry and X-ray diffraction (XRD) analyses were performed to characterize functional properties, and isotherm, kinetic, rate-limiting, and thermodynamic analyses were conducted. The FTIR analysis revealed that different biosorbents had different functional properties on their adsorptive surfaces. The FTIR and XRD results obtained before and after MB adsorption with PSC indicated that the surface functional groups of carbonyl and hydroxyl actively participated in the removal process. According to the isotherm analysis, monolayer adsorption was observed with the Langmuir model with a determination coefficient of 0.998. The duration to reach the maximum adsorption capacity for MB adsorption with PSC was 120 min, and the adsorption process was exothermic due to the negative enthalpy change (-9.950 kJ/mol). Moreover, the boundary layer thickness and intraparticle diffusion were the rate-limiting factors in the adsorption process. As a new biosorbent for MB adsorption, PSC could be used in activated carbon production to enhance the performance of dye removal.展开更多
The toxic dyestuff's from printing and dyeing wastewater have caused serious damages to the ecological environ-ment,thus exploring effective methods to remove them having become a key topic.Here,a series of biocha...The toxic dyestuff's from printing and dyeing wastewater have caused serious damages to the ecological environ-ment,thus exploring effective methods to remove them having become a key topic.Here,a series of biochar sam-ples were synthesized form kenaf to adsorb methylene blue(MB),which was acted as the dye representative for the test of adsorption capacity due to the presence of abundant double bond and aroma tic heterocyclic ring.By tuning the raw materials and pyrolysis temperature,a super adsorption capacity about 164.21 mg·g^(-1) was obtained over the biochar that pyrolyzed at 700℃ with the kenaf fiber as raw material Through the physical adsorption,elemental analysis,FTIR spectra and NH_(3)-TPD,it was found the high surface area and pore volume of biochar played a key role in the adsorption of MB,and the acidic sites would also assist the adsorption process.Besides,the adsorption kinetic model was ftted and calculated,implying the MB physically adsorbed on the bio-char rapidly and then occurred chemical adsorption on the acidic sites.In addition,through KBC700 recycling experiments,it was found that kenaf biochar had a good binding force to MB,which effectively avoided secondary pollution.This work provides important insights for the adsorption mechanism of MB by biochar,also offers some guidance for the further synthesis of biochar from various biomass.展开更多
This study investigated the power of hydroxyapatite adsorbent prepared by a combined precipitation-microwave method, for removing a cationic dye methylene blue in aqueous media. The used adsorbent was characterized by...This study investigated the power of hydroxyapatite adsorbent prepared by a combined precipitation-microwave method, for removing a cationic dye methylene blue in aqueous media. The used adsorbent was characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR). The adsorption tests were conducted in batch mode. The effect of temperature, the pH of the solution and the mass of the adsorbent on the adsorption were determined. It is found that the adsorption was pH and temperature dependent. The kinetic study showed that the second-order model gives a better description of the kinetics of the adsorption reaction than the first-order model. Analysis of adsorption isotherms using different classical models showed that adsorption may be governed by the isotherms of Langmuir. The thermodynamic parameters were determined from the values of the maximum adsorption capacity and equilibrium constants.展开更多
NaOH-modified dead leaves of plane trees were used as bioadsorbent to remove methylene blue (MB) from aqueous solution. Variable influencing factors, including contact time, temperature, initial MB concentration and p...NaOH-modified dead leaves of plane trees were used as bioadsorbent to remove methylene blue (MB) from aqueous solution. Variable influencing factors, including contact time, temperature, initial MB concentration and pH were studied through single-factor experiments. The results showed that the initial concentration 100 mg/L, bioadsorbent of 2.5 g/L, pH of 7, room temperature were the best adsorption conditions. The NaOH-modified bioadsorbent had a high adsorption capacity for MB, and its saturated extent of adsorption was 203.28 mg/g, which was higher than the un-modified dead leaves (145.62 mg/g) and some other bioadsorbents. Finally, adsorption kinetics and isotherms were discussed, suggesting that the Langmuir isotherm model and Pseudo-second order kinetics were fitted well with the adsorption process.展开更多
The kinetics of adsorption and parameters of equilibrium adsorption of Methylene Blue(MB)on hybrid laponite-multi-walled carbon nanotube(NT)particles in aqueous suspensions were determined.The laponite platelets w...The kinetics of adsorption and parameters of equilibrium adsorption of Methylene Blue(MB)on hybrid laponite-multi-walled carbon nanotube(NT)particles in aqueous suspensions were determined.The laponite platelets were used in order to facilitate disaggregation of NTs in aqueous suspensions and enhance the adsorption capacity of hybrid particles for MB.Experiments were performed at room temperature(298 K),and the laponite/NT ratio(Xl)was varied in the range of 0–0.5.For elucidation of the mechanism of MB adsorption on hybrid particles,the electrical conductivity of the system as well as the electrokinetic potential of laponite-NT hybrid particles were measured.Three different stages in the kinetics of adsorption of MB on the surface of NTs or hybrid laponite-NT particles were discovered to be a fast initial stage Ⅰ(adsorption time t=0–10 min),a slower intermediate stage Ⅱ(up to t=120 min)and a long-lasting final stage Ⅲ(up to t=24 hr).The presence of these stages was explained accounting for different types of interactions between MB and adsorbent particles,as well as for the changes in the structure of aggregates of NT particles and the long-range processes of restructuring of laponite platelets on the surface of NTs.The analysis of experimental data on specific surface area versus the value of Xl evidenced in favor of the model with linear contacts between rigid laponite platelets and NTs.It was also concluded that electrostatic interactions control the first stage of adsorption at low MB concentrations.展开更多
In this research, for the first time, a series of Co(Ⅱ) doped copper terephthalate(Co X-Cu BDC,where X is doping percentage) were successfully synthesized via solvothermal method and were tested for dye removal appli...In this research, for the first time, a series of Co(Ⅱ) doped copper terephthalate(Co X-Cu BDC,where X is doping percentage) were successfully synthesized via solvothermal method and were tested for dye removal application. The physical properties of Co X-CuBDC were studied by several techniques including X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), energy-dispersive spectroscopy(EDS), thermogravimetric analysis(TGA)and Brunauer–Emmett–Teller(BET) surface area analysis. The incorporation of Co(Ⅱ) dopant leads to isomorphic substitution of Cu(II) in the CuBDC framework with the maximum doping percentage of 22. Doping and parent MOFs which are non-porous were used for removal of Methylene Blue(MB) from aqueous solution. Adsorption capacity of Co22-CuBDC and CuBDC are 52 and 58 mg/g, respectively, both of which are higher than the adsorption capacity recorded from several high porosity MOFs. Adsorption kinetic studies indicate that adsorption process follows pseudo-second order model while the adsorption mechanism is dominated by electrostatic attraction. Overall, even though these materials show non-porous characteristic,it can be used effectively in wastewater treatment application.展开更多
A study of batch and column adsorption using A. jiringa seed shell as a natural adsorbent to remove methylene blue from aqueous solution was carried out. This study aimed to determine the effectiveness of A. jiringa s...A study of batch and column adsorption using A. jiringa seed shell as a natural adsorbent to remove methylene blue from aqueous solution was carried out. This study aimed to determine the effectiveness of A. jiringa seed shell in removing methylene blue as well as to determine the isotherm and adsorption kinetics of methylene blue by A. jiringa seed shells. Parameters in the batch study showed optimum pH for adsorption was at pH 7 with the optimum contact time of 60 minutes whereas the adsorbent dose obtained was 12 g/l. The percentage removal of methylene blue increased with elevated temperature while the ionic strength reduced the adsorption capacity in the dye uptake. Langmuir isotherm was suitable for this study rather than Freundlich model due to the higher regression value: R2 = 0.9999. The most suitable kinetic model for this study was the pseudo second order, compared to pseudo first order, Elovich and intra particle with the value of regression: R2 = 0.9158. This column adsorption study used several different flow rates: 15 mL/min, 18 mL/min, 21 mL/min, 24 mL/min and 27 mL/min for 75 minutes long. The breakthrough time was lesser: 10 minutes in higher flow rates (24 mL/min and 27 mL/min), which indicated the shorter time for the adsorbent to be saturated. Thomas and Yoon & Nelson’s models were proven to be more suitable compared to Bohart-Adams model for the fixed bed adsorption study.展开更多
基金Financial supports from National Natural Science Foundation of China (No. 40472026 and No. 40072017)
文摘The adsorption kinetics of methylene blue from aqueous solutions on purified palygorskite was investigated. The kinetics data related to the adsorption of methylene blue from aqueous solutions are in good agreement with the pseudo-second order equation in ranges of initial concentration of 120-210 mg/L, oscillation speed of 100-200 r/min and temperature of 298-328K. The experimental results show that methylene blue is only adsorbed onto the external surface of purified palygorskite, and the apparent adsorption activation energy is 13.92 kJ/mol. The relatively low apparent adsorption activation energy suggests that the adsorption of methylene blue involves in not only a chemical, but also a physical adsorption process, and it is controlled by the combination of chemical adsorption and fiquid-film diffusion.
文摘In this research miswak leaves, agriculture wastes, available in large quantity in Saudi Arabia, was used as low-cost adsorbent for removing methylene blue (MB) dye. Equilibrium behavior of miswak leaves was investigated by performing batch adsorption experiments. The effects of [MB] 0, pH, contact time and adsorbent dose were evaluated. An alkaline pH (10.6) was favorable to the adsorption of MB dye. Adsorption isotherm models, Langmuir, Freundlich and Temkin were used to simulate the equilibrium data. Langmuir equation was found to have the highest value of R2 compared with other models. Furthermore, it was found that miswak leaves have a high adsorptive capacity towards MB dye (200 mg/g) and show favorable adsorption of MB dye with separation factor (RL < 1). In addition, pseudo-first- order, pseudo-second order and intra-particle diffusion were used to study the kinetics of MB adsorption onto miswak leaves. Adsorption process undergoes pseudo-second order kinetic as proved by the high value of R2 and the low value of sum of squared error (SSE percentage). Results indicated that intra-particle diffusion is not the limiting step, and the adsorption process is spontaneous as indicated by the negative value of the .
文摘Mango peels,which constitute a significant proportion of urban waste,have been modified with phosphoric acid for use as a biosorbent in the removal of methylene blue from wastewater.The characterization of the obtained biosorbent showed that cellulose is the primary constituent followed by lignin and hemicellulose.The high water content and the low value of ash content indicate that the studied biosorbent is a porous material containing a low proportion of inorganic,inert,amorphous and unusable part for biosorbent production.The zero charge point(pHpzc)assessment showed that the overall surface charge of the biosorbent is negative and therefore plays a key role in the adsorption process.The adsorption of methylene blue by mango peels biosorbent is a two-step process:a rapid first step in which over 90%methylene blue is removed in less than 10 min followed by a slowdown of the adsorption rate when approaching the adsorption equilibrium.Among pseudo-first,pseudo-second order and intraparticle diffusion kinetics models studies,pseudo-second order was the best applicable to describe methylene blue adsorption,suggesting a two-step mechanism:the transfer of methylene blue molecules from the solution to the mango peels biosorbent surface,followed by the interaction between adsorbates and surface.The equilibrium adsorption data were analyzed by Langmuir,Freundlich and Temkin isotherms models.Among them,Langmuir was the best model to describe adsorption,indicating the existence of homogeneous distribution of adsorption sites on mango peels biosorbent surface and a mono-layer adsorption of methylene blue molecules.The low value of Temkin’s constant B relative to the interaction energy between methylene blue molecules and the surface of the biosorbent shows that the adsorption involved is a physisorption process.
基金Funded by the National Natural Science Foundation of China(No.21407020)the Fundamental Research Fund for the Central Universities(No.N130302004)
文摘Kinetics of photocatalytic degradation of methylene blue(MB) over Ca Ti O3 was studied. Effects of the solution p H, the MB concentration, the Ca Ti O3 dosage, and the type of light source on photocatalytic degradation rate of MB over Ca Ti O3 were investigated in detail. The results show that photocatalytic degradation of MB over Ca Ti O3 followed the first-order reaction. The apparent rate constant(kobs) of MB significantly increased with increasing solution p H while it greatly decreased with increasing MB concentration. The kobs of MB increased with increasing Ca Ti O3 dosage from 0.05 to 0.1 g, whereas it slightly decreased with increasing Ca Ti O3 dosage in the range of 0.1-0.4 g. The kobs of MB under UV-visible light irradiation was larger by factors of 2.2 than that under visible light irradiation. The kobs of MB was(4.8±0.3)×10-1h-1 under optimal conditions with the solution p H of 11, the MB concentration of 1 ppm, the Ca Ti O3 dosage of 0.1 g, and UV-visible light irradiation.
文摘Tea waste/CuFe2O4 (TW/C) composite was prepared by co-precipitation method. The TW and TW/C samples are characterized by FTIR, XRD, SEM and N2 physical adsorption. The results showed that specific surface area of 350 and 570 m2·g?1 for TW and TW/C, respectively. The average pore size of TW/C is ca. 100 nm. Adsorption of methylen blue onto TW/C composite has been studied. Measurements are performed at various contact time, pH and adsorbent dosage. The adsorption kinetics of methylen blue (MB) could be described by the pseudo-second order kinetic model. The adsorption isotherms are described by means of Langmuir and Freundlich isotherms. It was found that the Freundlich model fit better than the Langmuir model. The thermodynamic constants of the adsorption were calculated to predict the nature of adsorption. The values of thermodynamic parameters indicate that a spontaneous and endothermic process was occurred.
文摘Removal of Methylene Blue (MB) and Crystal Violet (CV) dyes from monocomponent and binary aqueous solutions by water hyacinth-E. Crassipes roots fixed on alginate (a low-cost adsorbent) has been investigated. The extent of adsorption was evaluated as a function of solution pH, initial dye concentration, and bead biomass loading. Kinetic sorption data were analysed by widely used models: pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models. The results showed that pseudo-second-order model better described the biosorption experimental data than the pseudo-first-order kinetic model for both dyes, whilst the Elovich model fitted the biosorption experimental data at lower dye concentrations. The intraparticle diffusion model indicated that sorption of CV and MB was characterized by rapid surface adsorption coupled with slow film diffusion process at higher initial dye concentration and at all initial bead biomass loading. The range of mean free energy values confirmed physical adsorption as the mechanism for dye removal from solution.
基金financial support of University of Tehran for this researchfinancial support of Iran Nanotechnology Initiative Council
文摘The photocatalytic performance of mechano-thermally synthesized Fe/FeS nanostructures formed from micron-sized starting materials was compared with that of a thermally synthesized nanostructure with nano-sized precursors in this paper. The properties of as-synthesized materials were studied by X-ray diffraction(XRD), transmission electron microscopy(TEM), vibrating sample magnetometry(VSM), diffuse reflectance spectroscopy(DRS), and ultraviolet–visible(UV-Vis) spectroscopy. The effects of irradiation time, methylene blue(MB) concentration, catalyst dosage, and p H value upon the degradation of MB were studied. Magnetic properties of the samples showed that both as-synthesized Fe/FeS photocatalysts are magnetically recoverable, eliminating the need for conventional filtration steps. Degradation of 5 ppm of the MB solution by mechano-thermally synthesized Fe/FeS with a photocatalyst dosage of 1 kg/m^3 at pH 11 can reach 96% after 12 ks irradiation under visible light. The photocatalytic efficiency is higher in alkaline solution. The kinetics of photocatalytic degradation in both samples is controlled by a first-order reaction. However, the rate-constant value in the thermally synthesized Fe/FeS photocatalyst sample is only 1.5 times greater than that of the mechano-thermally synthesized one.
基金financially supported by the NNSFC(Nos.21003021,21173044,21473096)the Science and Technology Project of the Education Office of Fujian Province(JA12017)+3 种基金National Basic Research Program of China(973 Program,No.2012CB722607)the Science and Technology Project of Fujian Province(Nos.2007J0359,2006F5030,CE0015)the Ningde Normal University projects on serving the western coast to the TW strait(No.2010H103)the Project of Fujian Province Communications Department(No.201323)
文摘V-doped TiO2 nanoparticles(NPs) as dye adsorbents are synthesized by the co-precipitation method and characterized by X-ray powder diffraction, transmission electron microscope, N2 adsorption at 77 K, and X-ray photoelectron spectroscopy. The adsorption of methylene blue(MB) on the V-doped TiO2 NPs is studied in detail by varying the calcination temperature and V doping amount of the adsorbent, adsorbate concentration, adsorbent dosage, agitation rate, reaction temperature, and p H. The comparison of dye adsorption on V-doped TiO2 and parent TiO2 demonstrates that the adsorptive activity of TiO2 can be improved by V doping. The enhanced adsorptive performance can be attributed to the tremendous changes in texture, structure, and surface morphology of adsorbent. The adsorption kinetic analysis shows that the adsorption follows the pseudo-second order kinetics. The apparent activation energy for adsorption is calculated by Arrhenius formula to be 37.6 k J·mol-1, indicating that the adsorption is controlled by both of the diffusion and interfacial adsorption steps. The adsorption data are analyzed using Langmuir and Freundlich isotherms and the results indicate that the Langmuir model provides better correlation of the experimental data. The results conclusively show that the adsorption of MB is a spontaneous behavior and endothermic reaction with the ΔH value of 17.60 k J·mol-1.
基金supported by the National Natural Science Foundation of China (No.20877077)the Project of Jiangsu Provincial Science and Technology Office (No.BE2008087)
文摘A series of chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites were synthesized and used as adsorbents for the investigation of the effect of process parameters such as vermiculite content, pH of dye solution, contact time, initial concentration of dye solution, temperature, ionic strength and concentration of surfactant sodium dodecyl sulfate on the removal of Methylene Blue (MB) from aqueous solution. The results showed that the adsorption capacity for dye increased with increasing pH, contact time and initial dye concentration, but decreased with increasing temperature, ionic strength and sodium dodecyl sulfate concentration in the present of the surfactant. The adsorption kinetics of MB onto the hydrogel composite followed pseudo second-order kinetics and the adsorption equilibrium data obeyed Langmuir isotherm. By introducing 10 wt.% vermiculite into chitosan-g-poly (acrylic acid) polymeric network, the obtaining hydrogel composite showed the highest adsorption capacity for MB, and then could be regarded as a potential adsorbent for cationic dye removal in a wastewater treatment process.
文摘The authors investigated the catalytic activity of TiO2 for methylene blue(MB) degradation under solar light.The reaction parameters such as reaction time,TiO2 content,temperature,pH,MB concentration and light irradiation were in attention.Then,the experimental data was analyzed to investigate the adsorption order and adsorption model.The results indicate that the optimum conditions for the removal of MB are a TiO2 content of 0.5 g/L,0.50 mg/L MB solution,a temperature of 30 ℃ and reaction time of 60 min.It was found that the amount of MB removal was decreased when the pH and temperature increased.This suggests that the removal process is exothermic.However,the solar light irradiation plays a vital role in enhancing the removal amount of MB.In the dark reaction,the ability of TiO2 to remove MB was increased when the pH increased.The kinetics studies confirm that the adsorption of MB is the Pseudo-second-order.And the adsorption model was fitted with the Freundlich isotherm.
基金Project (No. 29273127) supported by the National Natural Science Foundation of China
文摘SERS technique wae used to study the chemiesorption kinetics of Methylene Blue (MB) on the HNO3-etched silver surface. The adsorption kinetic parameters were deduced from different vibrational modes at a low concentration of 3.5 × 10?6 mol/L, and it showed that MB adsorbed uniformly (monolayerly) on silver surface. However, the adsorptive behavior turned anomalous at relatively higher concentrations and a possible explanation was suggested. In addition, the influence of Cl? ions on the adsorption states of MB was investigated, and it was shown that MB molecules, adsorbed on the silver surface, tended to transform the “lying-down” state to the “end - on” 4 state after CI? ions were added.
文摘The present work was done in order to develop and find out suitable conversion methods for coconut husk wastes into value-added products. It is well-known that coconuts husk waste is hydrophobic therefore ethanol with different doses was used as a surfactant to enhance the removal efficiency. Treated samples at different adsorbent amounts, sintering temperatures & sintering time, stirring time, pH, and solution temperatures for color removal of Methylene Blue (MB) & Rhodamine B (RhB) and ammonium concentration were evaluated by using UV-Visible Spectroscopy. At 300°C, results showed complete removal for MB and more than 75% for RhB, whereas removal of ammonium ion reached around 52% when sintering product from husk waste was used. Further investigation was carried out for ammonium ion to understand the desorption kinetic behaviors and isotherm models. Kinetics indicated that desorption of ammonium ion followed pseudo-first order equation. Adsorption thermodynamic parameters such as ΔG, ΔH, and ΔS followed Van’t Hoff plot for adsorption and found to be negative which indicated that the adsorption process for ammonium onto coconut husk was physical, spontaneous and exothermic.
文摘Water pollution caused by industrial dyes has become a severe problem in the modern world. Biosorbents can be used in an eco-friendly manner to remove industrial dyes. In this study, five biosorbents were selected: palmyrah sprout casing (PSC), manioc peel, lime peel, king coconut husk, and coconut kernel. Batch adsorption experiments were conducted to identify the best biosorbent with the highest ability to adsorb methylene blue (MB) from wastewater. The detailed mechanisms of PSC used in the adsorptive removal of MB in aqueous phase were investigated. Of the five biosorbents, PSC exhibited the best removal performance with an adsorption capacity at equilibrium (qe) of 27.67 mg/g. The qe values of lime peel, king coconut husk, manioc peel, and coconut kernel were 24.25 mg/g, 15.29 mg/g, 10.84 mg/g, and 7.06 mg/g, respectively. To explain the mechanisms of MB adsorption with the selected biosorbents, the Fourier transform infrared (FTIR) spectrometry and X-ray diffraction (XRD) analyses were performed to characterize functional properties, and isotherm, kinetic, rate-limiting, and thermodynamic analyses were conducted. The FTIR analysis revealed that different biosorbents had different functional properties on their adsorptive surfaces. The FTIR and XRD results obtained before and after MB adsorption with PSC indicated that the surface functional groups of carbonyl and hydroxyl actively participated in the removal process. According to the isotherm analysis, monolayer adsorption was observed with the Langmuir model with a determination coefficient of 0.998. The duration to reach the maximum adsorption capacity for MB adsorption with PSC was 120 min, and the adsorption process was exothermic due to the negative enthalpy change (-9.950 kJ/mol). Moreover, the boundary layer thickness and intraparticle diffusion were the rate-limiting factors in the adsorption process. As a new biosorbent for MB adsorption, PSC could be used in activated carbon production to enhance the performance of dye removal.
基金This work was supported by National Natural Science Foundation of China(51903131)Natural Science Foundation of Shandong Province(ZR2019QEM007)+2 种基金Key Research and Development Program of Shandong Province(2020CXGC011101)State Key Laboratory of Bio-Fibers and Eco-Textiles(Qingdao University)(ZKT16 and ZKT21)Special Foundation of“Taishan Scholar”Construction Program(ts20190932).
文摘The toxic dyestuff's from printing and dyeing wastewater have caused serious damages to the ecological environ-ment,thus exploring effective methods to remove them having become a key topic.Here,a series of biochar sam-ples were synthesized form kenaf to adsorb methylene blue(MB),which was acted as the dye representative for the test of adsorption capacity due to the presence of abundant double bond and aroma tic heterocyclic ring.By tuning the raw materials and pyrolysis temperature,a super adsorption capacity about 164.21 mg·g^(-1) was obtained over the biochar that pyrolyzed at 700℃ with the kenaf fiber as raw material Through the physical adsorption,elemental analysis,FTIR spectra and NH_(3)-TPD,it was found the high surface area and pore volume of biochar played a key role in the adsorption of MB,and the acidic sites would also assist the adsorption process.Besides,the adsorption kinetic model was ftted and calculated,implying the MB physically adsorbed on the bio-char rapidly and then occurred chemical adsorption on the acidic sites.In addition,through KBC700 recycling experiments,it was found that kenaf biochar had a good binding force to MB,which effectively avoided secondary pollution.This work provides important insights for the adsorption mechanism of MB by biochar,also offers some guidance for the further synthesis of biochar from various biomass.
文摘This study investigated the power of hydroxyapatite adsorbent prepared by a combined precipitation-microwave method, for removing a cationic dye methylene blue in aqueous media. The used adsorbent was characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR). The adsorption tests were conducted in batch mode. The effect of temperature, the pH of the solution and the mass of the adsorbent on the adsorption were determined. It is found that the adsorption was pH and temperature dependent. The kinetic study showed that the second-order model gives a better description of the kinetics of the adsorption reaction than the first-order model. Analysis of adsorption isotherms using different classical models showed that adsorption may be governed by the isotherms of Langmuir. The thermodynamic parameters were determined from the values of the maximum adsorption capacity and equilibrium constants.
文摘NaOH-modified dead leaves of plane trees were used as bioadsorbent to remove methylene blue (MB) from aqueous solution. Variable influencing factors, including contact time, temperature, initial MB concentration and pH were studied through single-factor experiments. The results showed that the initial concentration 100 mg/L, bioadsorbent of 2.5 g/L, pH of 7, room temperature were the best adsorption conditions. The NaOH-modified bioadsorbent had a high adsorption capacity for MB, and its saturated extent of adsorption was 203.28 mg/g, which was higher than the un-modified dead leaves (145.62 mg/g) and some other bioadsorbents. Finally, adsorption kinetics and isotherms were discussed, suggesting that the Langmuir isotherm model and Pseudo-second order kinetics were fitted well with the adsorption process.
基金supported by National Academy Science of Ukraine(No.43/15H)
文摘The kinetics of adsorption and parameters of equilibrium adsorption of Methylene Blue(MB)on hybrid laponite-multi-walled carbon nanotube(NT)particles in aqueous suspensions were determined.The laponite platelets were used in order to facilitate disaggregation of NTs in aqueous suspensions and enhance the adsorption capacity of hybrid particles for MB.Experiments were performed at room temperature(298 K),and the laponite/NT ratio(Xl)was varied in the range of 0–0.5.For elucidation of the mechanism of MB adsorption on hybrid particles,the electrical conductivity of the system as well as the electrokinetic potential of laponite-NT hybrid particles were measured.Three different stages in the kinetics of adsorption of MB on the surface of NTs or hybrid laponite-NT particles were discovered to be a fast initial stage Ⅰ(adsorption time t=0–10 min),a slower intermediate stage Ⅱ(up to t=120 min)and a long-lasting final stage Ⅲ(up to t=24 hr).The presence of these stages was explained accounting for different types of interactions between MB and adsorbent particles,as well as for the changes in the structure of aggregates of NT particles and the long-range processes of restructuring of laponite platelets on the surface of NTs.The analysis of experimental data on specific surface area versus the value of Xl evidenced in favor of the model with linear contacts between rigid laponite platelets and NTs.It was also concluded that electrostatic interactions control the first stage of adsorption at low MB concentrations.
基金funded by the new researcher in science and technology supporting fund of Thailand(No.SCH-NR2014-172)
文摘In this research, for the first time, a series of Co(Ⅱ) doped copper terephthalate(Co X-Cu BDC,where X is doping percentage) were successfully synthesized via solvothermal method and were tested for dye removal application. The physical properties of Co X-CuBDC were studied by several techniques including X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), energy-dispersive spectroscopy(EDS), thermogravimetric analysis(TGA)and Brunauer–Emmett–Teller(BET) surface area analysis. The incorporation of Co(Ⅱ) dopant leads to isomorphic substitution of Cu(II) in the CuBDC framework with the maximum doping percentage of 22. Doping and parent MOFs which are non-porous were used for removal of Methylene Blue(MB) from aqueous solution. Adsorption capacity of Co22-CuBDC and CuBDC are 52 and 58 mg/g, respectively, both of which are higher than the adsorption capacity recorded from several high porosity MOFs. Adsorption kinetic studies indicate that adsorption process follows pseudo-second order model while the adsorption mechanism is dominated by electrostatic attraction. Overall, even though these materials show non-porous characteristic,it can be used effectively in wastewater treatment application.
文摘A study of batch and column adsorption using A. jiringa seed shell as a natural adsorbent to remove methylene blue from aqueous solution was carried out. This study aimed to determine the effectiveness of A. jiringa seed shell in removing methylene blue as well as to determine the isotherm and adsorption kinetics of methylene blue by A. jiringa seed shells. Parameters in the batch study showed optimum pH for adsorption was at pH 7 with the optimum contact time of 60 minutes whereas the adsorbent dose obtained was 12 g/l. The percentage removal of methylene blue increased with elevated temperature while the ionic strength reduced the adsorption capacity in the dye uptake. Langmuir isotherm was suitable for this study rather than Freundlich model due to the higher regression value: R2 = 0.9999. The most suitable kinetic model for this study was the pseudo second order, compared to pseudo first order, Elovich and intra particle with the value of regression: R2 = 0.9158. This column adsorption study used several different flow rates: 15 mL/min, 18 mL/min, 21 mL/min, 24 mL/min and 27 mL/min for 75 minutes long. The breakthrough time was lesser: 10 minutes in higher flow rates (24 mL/min and 27 mL/min), which indicated the shorter time for the adsorbent to be saturated. Thomas and Yoon & Nelson’s models were proven to be more suitable compared to Bohart-Adams model for the fixed bed adsorption study.