A mixed distribution of empirical variances, composed of two distributions the basic and contaminating ones, and referred to as PERG mixed distribution of empirical variances, is considered. In the paper a robust inve...A mixed distribution of empirical variances, composed of two distributions the basic and contaminating ones, and referred to as PERG mixed distribution of empirical variances, is considered. In the paper a robust inverse problem solution is given, namely a (new) robust method for estimation of variances of both distributions—PEROBVC Method, as well as the estimates for the numbers of observations for both distributions and, in this way also the estimate of contamination degree.展开更多
Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction ...Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction of production.In this new method,the annual production of old and new wells is predicted by year first and then is summed up to yield the production for the planning period.It shows that the changes in the production of old wells in old blocks can be fitted and predicted using the vapor pressure model(VPM),with precision of 80%e95%,which is 6.6%e13.2%higher than that of other life cycle models.Furthermore,a new production prediction process and method for new wells have been established based on this life cycle model to predict the production of medium-to-shallow gas reservoirs in western Sichuan Basin,with predication error of production rate in 2021 and 2022 being 6%and 3%respectively.The new method can be used to guide the medium-and long-term planning or annual scheme preparation for gas development.It is also applicable to planning for large single gas blocks that require continuous infill drilling and adjustment to improve gas recovery.展开更多
The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems. By this method, several same or similar time-varying components are arranged according...The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems. By this method, several same or similar time-varying components are arranged according to certain rules along the time axis. The synthesized command can suppress the arbitrary unwanted vibration harmonic while achieving the desired rigid body motion. The number of the components increases rapidly when the number of harmonic vibration is growing. In this article, the CSVS based on zero-placement technique is used to construct the synthesized command to suppress the multi-harmonics simultaneously in the discrete domain. The nature of zero-placement method is to put enough zeros to cancel system poles at necessary points. The designed synthesized command has equal time intervals between each component and which is much easier to be implemented. Using this method, the number of components increases linearly with the increasing of the number of being suppressed harmonics. For the spacecraft with flexible appendages, CSVS based on zero-placement is used to design the time optimal large angle maneuver control strategy. Simulations have verified the validity and superiority of the proposed approach.展开更多
In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are t...In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are the most commonly used methods in engineering applications.However,these methods are highly dependent on various non-physical parameters,which have great effects on the simulation results.Moreover,a tremendous number of degrees of freedom in the contact–impact problems will influenc thenumericalefficien ysignificantl.Withtheconsideration of these two problems,a formulation combining the component mode synthesis method and the Lagrangian method is presented to investigate the contact–impact problems in fl xible multi-body system numerically.Meanwhile,the finit element meshing laws of the contact bodies will be studied preliminarily.A numerical example with experimental verificatio will certify the reliability of the presented formulationincontact–impactanalysis.Furthermore,aseries of numerical investigations explain how great the influenc of the finit element meshing has on the simulation results.Finally the limitations of the element size in different regions are summarized to satisfy both the accuracy and efficien y.展开更多
In the paper, the primary component analysis is made using 8 seismicity parameters of earthquake frequency N (ML≥3.0), b-value, η-value, A(b)-value, Mf-value, Ac-value, C-value and D-value that reflect the character...In the paper, the primary component analysis is made using 8 seismicity parameters of earthquake frequency N (ML≥3.0), b-value, η-value, A(b)-value, Mf-value, Ac-value, C-value and D-value that reflect the characteristics of magnitude, time and space distribution of seismicity from different respects. By using the primary component analysis method, the synthesis parameter W reflecting the anomalous features of earthquake magnitude, time and space distribution can be gained. Generally, there is some relativity among the 8 parameters, but their variations are different in different periods. The earthquake prediction based on these parameters is not very well. However, the synthesis parameter W showed obvious anomalies before 13 earthquakes (MS≥5.8) occurred in North China, which indicates that the synthesis parameter W can reflect the anomalous characteristics of magnitude, time and space distribution of seismicity better. Other problems related to the conclusions drawn by the primary component analysis method are also discussed.展开更多
A new technique of eigen mode analysis, Method of Natural Orthogonal Components (MNOC) is used to analyze the ionospheric equivalent current systems obtained on the basis of magnetic data at six meridian magnetometer ...A new technique of eigen mode analysis, Method of Natural Orthogonal Components (MNOC) is used to analyze the ionospheric equivalent current systems obtained on the basis of magnetic data at six meridian magnetometer chains in the northern hemisphere during March 17 19, 1978. The results show that the whole current pattern for any given instant consists of a few eigen modes with different intensities. The first eigen mode exhibits a two cell current construction, characterizing the large scale magnetospheric convection and directly driven process, while the second eigen mode shows a concentrated westward electrojet at midnight sector, characterizing the substorm current wedge and the loading unloading process. The first mode consistently exists whenever during quiet periods or at substorms, and its intensity increases from the beginning of the growth phase of substorms, then quickly intensifies in the expansion phase, followed by a gradual decrease in the recovery phase. On the other hand, the intensity of the second mode remains to be near zero during both quiet time and the growth phase of substorms. Its rapid enhancement occurs in the expansion phase. These characteristics in the current patterns and the intensity variations coincide with the defined physical processes of the directly driven and loading unloading components.展开更多
An improved covariance driven subspace identification method is presented to identify the weakly excited modes. In this method, the traditional Hankel matrix is replaced by a reformed one to enhance the identifiabilit...An improved covariance driven subspace identification method is presented to identify the weakly excited modes. In this method, the traditional Hankel matrix is replaced by a reformed one to enhance the identifiability of weak characteristics. The robustness of eigenparameter estimation to noise contamination is reinforced by the improved Hankel matrix, in combination with component energy index (CEI) which indicates the vibration intensity of signal components, an alternative stabilization diagram is adopted to effectively separate spurious and physical modes. Simulation of a vibration system of multiple-degree-of-freedom and experiment of a frame structure subject to wind excitation are presented to demonstrate the improvement of the proposed blind method. The performance of this blind method is assessed in terms of its capability in extracting the weak modes as well as the accuracy of estimated parameters. The results have shown that the proposed blind method gives a better estimation of the weak modes from response signals of small signal to noise ratio (SNR)and gives a reliable separation of spurious and physical estimates.展开更多
To improve the accuracy of fault location system, several short-circuit tests need to be conducted before being brought into service in autotransformer (AT) feeding systems for high-speed railways in China. However,...To improve the accuracy of fault location system, several short-circuit tests need to be conducted before being brought into service in autotransformer (AT) feeding systems for high-speed railways in China. However, no systematic algorithm yet exists to evaluate the consistency of the current distribution of short-circuit tests. A methodology is proposed in this paper to address this problem. Based on Kirchhoff’s current law and the generalized method of symmetrical components, the current deviations of the AT feeding systems are analysed and then normalized with the short-circuit current as they vary greatly with systems and short-circuit sites. It is also found that the short-circuit current varies with the calculation methods, and its unbiased standard deviation also reflects the consistency of the short-circuit test. The mean and maximum of the current deviations, as well as the unbiased standard deviation of the short-circuit current, show the consistency of the short-circuit test from different aspects,although the last two items are highly relevant. Therefore, a unified evaluation index is defined as the sum of the three items, and then applied in two case studies to test its performance. The results show that, the proposed index canclearly distinguish the consistency of the short-circuit tests and may be used to sort the short-circuit tests for fault location systems. Besides, some short-circuit tests may have very poor consistency indices, and thus are not applicable to the tuning of fault location systems. In the authors’ opinion, the determination of the threshold of the proposed index needs further investigation.展开更多
A component synthesis vibration suppression (CSVS) method for flexible structures is put forward. It can eliminate any unwanted orders of flexible vibration modes while achieves desired rigid motion. This method has ...A component synthesis vibration suppression (CSVS) method for flexible structures is put forward. It can eliminate any unwanted orders of flexible vibration modes while achieves desired rigid motion. This method has robustness to uncertainty of frequency, which makes it practical in engineering. Several time optimal and time-fuel optimal control strategies are designed for a kind of single flexible link. Simulation results validate the feasibility of our method.展开更多
Symmetrical components method is employed in analysis of the characteristic motor faults.Motor protection method is put forward based on detecting positive sequence,negative sequence and zero sequence current.And prob...Symmetrical components method is employed in analysis of the characteristic motor faults.Motor protection method is put forward based on detecting positive sequence,negative sequence and zero sequence current.And problems of lack of motor overload capacity in existing mining motor protection system,impact of dynamic current on stage and definite-time delay operation and inaccuracy of criterion phase failure protection are analyzed.The unbalanced faults protection and inverse-time overload protection,which can make protection time change with the current movement,are proposed.The above problems can be solved,and the reliability and intelligent of coal shearer are improved.展开更多
The restaurant is traditional industry of the third industry in our country. Since May 1 in this year, China's Restaurant Industry to implement "replace the business tax with value-added tax" policy and change to p...The restaurant is traditional industry of the third industry in our country. Since May 1 in this year, China's Restaurant Industry to implement "replace the business tax with value-added tax" policy and change to pay VAT. This paper analyzed the possible impact on restaurant industry after the" replace the business tax with value-added tax" based on the understanding of the tax theory of" replace the business tax with value-added tax" and the tax compliance in our country. At the same time, this paper used the statistical analysis of data on the investigation of 100 samples of the VAT cognitive degree on "replace the business tax with value-added tax", using principal component analysis method to analyze and evaluate factors on the awareness of the restaurant owner to "replace the business tax with value-added tax" tax policy. After multiple comparison made on the sample data, this paper summarized and analyzed the countermeasures of improving the pushing effect in restaurant industry "replace the business tax with VAT ".展开更多
The paper reports quality analysis and evaluation at 6 - 10/0.4 kV low-voltage distribution grids in Uzbekistan. Power quality frequently does not correspond to the rated value which is largely due to unbalanced phase...The paper reports quality analysis and evaluation at 6 - 10/0.4 kV low-voltage distribution grids in Uzbekistan. Power quality frequently does not correspond to the rated value which is largely due to unbalanced phase loading in grids and which also results in increased power loss. The study of the asymmetrical operating modes of the rural distribution networks of 0.4 kV was conducted in three steps: measurement, calculations and analysis of relevant data;providing practical guidelines and finally, implementing instruments to normalize grid operation. Measuring was conducted using certified instrumentation analyzer “MALIKA” designed by authors. The study and analysis of additional power losses as the function of indicators of asymmetrical features of voltage and current in operating 0.4 kV grids reveals that, quality of electric power at grids under investigation, merely does not meet the requirements of the Interstate Standard.展开更多
This paper proposes two concepts: the ecological footprint component index(EFCI) and the biocapacity component index(BCCI), based on the ecological footprint(EF) and Shannon entropy approaches. Per capita EFCI and BCC...This paper proposes two concepts: the ecological footprint component index(EFCI) and the biocapacity component index(BCCI), based on the ecological footprint(EF) and Shannon entropy approaches. Per capita EFCI and BCCI in China 1949-2013 are analyzed using empirical mode decomposition(EMD). Nonlinear models of per capita EFCI and BCCI in China 1949-2013 are presented and their cycles and predictions from 2014 to 2023 are analyzed. The results over the last 65 years show:(1) EFCI in China has increased constantly with fluctuations, while BCCI has slowly decreased. Their annual change rates are 2.81% and-1.26%, respectively. The increasing EFCI indicates a gradual improvement in China's sustainable development potential; the decreasing BCCI indicates severe environmental and population challenges.(2) The cycles of per capita EFCI have periods of 5.4 and 16.3 years, while cycles of per capita BCCI have periods of 3.6, 13,and 21.7 years. The predictive models indicate that EFCI will first decrease, reaching 0.02725 in2014, and will subsequently increase to 0.03261 in 2021. BCCI will increase, reaching 0.01365 in2014 and 0.01541 in 2022. EFCI and BCCI will reach 0.03037 and 0.01537, respectively, in 2023.Policymakers should ensure that the EFCI and BCCI increase in 2023.展开更多
Current multiscale topology optimization restricts the solution space by enforcing the use of a few repetitive microstructures that are predetermined,and thus lack the ability for structural concerns like buckling str...Current multiscale topology optimization restricts the solution space by enforcing the use of a few repetitive microstructures that are predetermined,and thus lack the ability for structural concerns like buckling strength,robustness,and multi-functionality.Therefore,in this paper,a new multiscale concurrent topology optimization design,referred to as the self-consistent analysis-based moving morphable component(SMMC)method,is proposed.Compared with the conventional moving morphable component method,the proposed method seeks to optimize both material and structure simultaneously by explicitly designing both macrostructure and representative volume element(RVE)-level microstructures.Numerical examples with transducer design requirements are provided to demonstrate the superiority of the SMMC method in comparison to traditional methods.The proposed method has broad impact in areas of integrated industrial manufacturing design:to solve for the optimized macro and microstructures under the objective function and constraints,to calculate the structural response efficiently using a reduced-order model:self-consistent analysis,and to link the SMMC method to manufacturing(industrial manufacturing or additive manufacturing)based on the design requirements and application areas.展开更多
The derivation and validation of analytical equations for predicting the tensile initial stiffness of threadfixed one-side bolts(TOBs),connected to enclosed rectangular hollow section(RHS)columns,is presented in this ...The derivation and validation of analytical equations for predicting the tensile initial stiffness of threadfixed one-side bolts(TOBs),connected to enclosed rectangular hollow section(RHS)columns,is presented in this paper.Two unknown stiffness components are considered:the TOBs connection and the enclosed RHS face.First,the trapezoidal thread of TOB,as an equivalent cantilevered beam subjected to uniformly distributed loads,is analyzed to determine the associated deformations.Based on the findings,the thread-shank serial-parallel stiffness model of TOB connection is proposed.For analysis of the tensile stiffness of the enclosed RHS face due to two bolt forces,the four sidewalls are treated as rotation constraints,thus reducing the problem to a two-dimensional plate analysis.According to the load superposition method,the deflection of the face plate is resolved into three components under various boundary and load conditions.Referring to the plate deflection theory of Timoshenko,the analytical solutions for the three deflections are derived in terms of the variables of bolt spacing,RHS thickness,height to width ratio,etc.Finally,the validity of the above stiffness equations is verified by a series of finite element(FE)models of T-stub substructures.The proposed component stiffness equations are an effective supplement to the component-based method.展开更多
The flutter characteristics of an actuator-fin system are investigated with structural nonlinearity and dynamic stiffness of the electric motor. The component mode substitution method is used to establish the nonlinea...The flutter characteristics of an actuator-fin system are investigated with structural nonlinearity and dynamic stiffness of the electric motor. The component mode substitution method is used to establish the nonlinear governing equations in time domain and frequency domain based on the fundamental dynamic equations of the electric motor and decelerator. The existing describing function method and a proposed iterative method are used to obtain the flutter characteristics containing preload freeplay nonlinearity when the control command is zero. A comparison between the results of frequency domain and those of time domain is studied. Simulations are carried out when the control command is not zero and further analysis is conducted when the freeplay angle is changed. The results show that structural nonlinearity and dynamic stiffness have a significant influence on the flutter characteristics. Limit cycle oscillations (LCOs) are observed within linear flutter boundary. The response of the actuator-fin system is related to the initial disturbance. In the nonlinear condition, the amplitude of the control command has an influence on the flutter characteristics.展开更多
The modeling method and identified method adapted to multi-degree-of-freedom structures with strucrural nonlinearities are established.The component mode synthesis method is used to establish the nonlinear governing e...The modeling method and identified method adapted to multi-degree-of-freedom structures with strucrural nonlinearities are established.The component mode synthesis method is used to establish the nonlinear governing equations by extending the connected relationships.Based on the modeling method,the Hilbert transform method is applied to identify the nonlinear stiffness of multi-degree-of-freedom structures.Nonlinear analysis and identification of a typical folding wing configuration with three freeplay hinges are investigated.The nonlinear governing equation is established based on present methods and the computing results of different stiffness are checked by finite element programming.In order to illustrate the influence of the nonlinearities,the frequency response characteristics of the structure are analyzed and Hilbert transform is performed.The Hilbert transform identification method is utilized to identify the nonlinear stiffness of nonlinear hinges in the time domain and several parametric studies are performed.In addition,the comparison of response is made to illustrate the feasibility of the methods.The results show that the extending component mode synthesis method in the present work can be used to establish the governing equation with structural nonlinearities.Based on the modeling method,the Hilbert transform identified method can be extended to multi-degree-of-freedom structures accurately.展开更多
Joints play an important role in providing ductility for steel-composite structures subject to extreme loading conditions,such as blast,fire and impact.Due to sound energy dissipation capability and fabrication effici...Joints play an important role in providing ductility for steel-composite structures subject to extreme loading conditions,such as blast,fire and impact.Due to sound energy dissipation capability and fabrication efficiency,semi-rigid joints have increasingly received attention during the last decade.This paper presents a component approach for modeling semi-rigid beam-to-column joints based on Eurocode3,where the post-elastic response,including component strain hardening and ultimate rotational capacity,is also considered.Failure criteria are defined based on the ultimate deformation capacity of components and bolt-rows.The model enables a direct integration of joint response into global frame models with the consideration of axial deformability,such that the interaction between bending moment and axial force within the joints can be realistically captured.In addition,elevated temperature can be considered in the joint model via the degradation of the component response.Through comparisons with available test data,the joint model is shown to have good accuracy,and the failure criteria are found to be reliable yet conservative.The strain hardening response of components is shown to have significant influence on the ultimate bending capacity of the joints,while neglecting it usually leads to a conservative prediction.展开更多
Direct current(DC)bus voltage stability is essential for the stable and reliable operation of a DC system.If an oscillation source can be quickly and accurately localized,the oscillation can be adequately eliminated.W...Direct current(DC)bus voltage stability is essential for the stable and reliable operation of a DC system.If an oscillation source can be quickly and accurately localized,the oscillation can be adequately eliminated.We propose a method based on the power spectral density for identifying the voltage oscillation source.Specifically,a DC distribution network model combined with the component connection method is developed,and the network is separated into multiple power modules.Compared with a conventional method,the proposed method does not require determining the model parameters of the entire power grid,which is typically challenging.Furthermore,combined with a novel judgment index,the oscillation source can be identified more intuitively and clearly to enhance the applicability to real power grids.The performance of the proposed method has been evaluated using the MATLAB/Simulink software and PLECS RT Box experimental platform.The simulation and experimental results verify that the proposed method can accurately identify oscillation sources in a DC distribution network.展开更多
文摘A mixed distribution of empirical variances, composed of two distributions the basic and contaminating ones, and referred to as PERG mixed distribution of empirical variances, is considered. In the paper a robust inverse problem solution is given, namely a (new) robust method for estimation of variances of both distributions—PEROBVC Method, as well as the estimates for the numbers of observations for both distributions and, in this way also the estimate of contamination degree.
基金funded by the project entitled Technical Countermeasures for the Quantitative Characterization and Adjustment of Residual Gas in Tight Sandstone Gas Reservoirs of the Daniudi Gas Field(P20065-1)organized by the Science&Technology R&D Department of Sinopec.
文摘Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction of production.In this new method,the annual production of old and new wells is predicted by year first and then is summed up to yield the production for the planning period.It shows that the changes in the production of old wells in old blocks can be fitted and predicted using the vapor pressure model(VPM),with precision of 80%e95%,which is 6.6%e13.2%higher than that of other life cycle models.Furthermore,a new production prediction process and method for new wells have been established based on this life cycle model to predict the production of medium-to-shallow gas reservoirs in western Sichuan Basin,with predication error of production rate in 2021 and 2022 being 6%and 3%respectively.The new method can be used to guide the medium-and long-term planning or annual scheme preparation for gas development.It is also applicable to planning for large single gas blocks that require continuous infill drilling and adjustment to improve gas recovery.
文摘The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems. By this method, several same or similar time-varying components are arranged according to certain rules along the time axis. The synthesized command can suppress the arbitrary unwanted vibration harmonic while achieving the desired rigid body motion. The number of the components increases rapidly when the number of harmonic vibration is growing. In this article, the CSVS based on zero-placement technique is used to construct the synthesized command to suppress the multi-harmonics simultaneously in the discrete domain. The nature of zero-placement method is to put enough zeros to cancel system poles at necessary points. The designed synthesized command has equal time intervals between each component and which is much easier to be implemented. Using this method, the number of components increases linearly with the increasing of the number of being suppressed harmonics. For the spacecraft with flexible appendages, CSVS based on zero-placement is used to design the time optimal large angle maneuver control strategy. Simulations have verified the validity and superiority of the proposed approach.
基金supported by the National Science Foundation of China (Grants 11132007,11272203)
文摘In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are the most commonly used methods in engineering applications.However,these methods are highly dependent on various non-physical parameters,which have great effects on the simulation results.Moreover,a tremendous number of degrees of freedom in the contact–impact problems will influenc thenumericalefficien ysignificantl.Withtheconsideration of these two problems,a formulation combining the component mode synthesis method and the Lagrangian method is presented to investigate the contact–impact problems in fl xible multi-body system numerically.Meanwhile,the finit element meshing laws of the contact bodies will be studied preliminarily.A numerical example with experimental verificatio will certify the reliability of the presented formulationincontact–impactanalysis.Furthermore,aseries of numerical investigations explain how great the influenc of the finit element meshing has on the simulation results.Finally the limitations of the element size in different regions are summarized to satisfy both the accuracy and efficien y.
基金Project of Joint Seismological Science Foundation of China (104090).
文摘In the paper, the primary component analysis is made using 8 seismicity parameters of earthquake frequency N (ML≥3.0), b-value, η-value, A(b)-value, Mf-value, Ac-value, C-value and D-value that reflect the characteristics of magnitude, time and space distribution of seismicity from different respects. By using the primary component analysis method, the synthesis parameter W reflecting the anomalous features of earthquake magnitude, time and space distribution can be gained. Generally, there is some relativity among the 8 parameters, but their variations are different in different periods. The earthquake prediction based on these parameters is not very well. However, the synthesis parameter W showed obvious anomalies before 13 earthquakes (MS≥5.8) occurred in North China, which indicates that the synthesis parameter W can reflect the anomalous characteristics of magnitude, time and space distribution of seismicity better. Other problems related to the conclusions drawn by the primary component analysis method are also discussed.
文摘A new technique of eigen mode analysis, Method of Natural Orthogonal Components (MNOC) is used to analyze the ionospheric equivalent current systems obtained on the basis of magnetic data at six meridian magnetometer chains in the northern hemisphere during March 17 19, 1978. The results show that the whole current pattern for any given instant consists of a few eigen modes with different intensities. The first eigen mode exhibits a two cell current construction, characterizing the large scale magnetospheric convection and directly driven process, while the second eigen mode shows a concentrated westward electrojet at midnight sector, characterizing the substorm current wedge and the loading unloading process. The first mode consistently exists whenever during quiet periods or at substorms, and its intensity increases from the beginning of the growth phase of substorms, then quickly intensifies in the expansion phase, followed by a gradual decrease in the recovery phase. On the other hand, the intensity of the second mode remains to be near zero during both quiet time and the growth phase of substorms. Its rapid enhancement occurs in the expansion phase. These characteristics in the current patterns and the intensity variations coincide with the defined physical processes of the directly driven and loading unloading components.
基金This project is supported by National Natural Science Foundation of China (No.10302019).
文摘An improved covariance driven subspace identification method is presented to identify the weakly excited modes. In this method, the traditional Hankel matrix is replaced by a reformed one to enhance the identifiability of weak characteristics. The robustness of eigenparameter estimation to noise contamination is reinforced by the improved Hankel matrix, in combination with component energy index (CEI) which indicates the vibration intensity of signal components, an alternative stabilization diagram is adopted to effectively separate spurious and physical modes. Simulation of a vibration system of multiple-degree-of-freedom and experiment of a frame structure subject to wind excitation are presented to demonstrate the improvement of the proposed blind method. The performance of this blind method is assessed in terms of its capability in extracting the weak modes as well as the accuracy of estimated parameters. The results have shown that the proposed blind method gives a better estimation of the weak modes from response signals of small signal to noise ratio (SNR)and gives a reliable separation of spurious and physical estimates.
文摘To improve the accuracy of fault location system, several short-circuit tests need to be conducted before being brought into service in autotransformer (AT) feeding systems for high-speed railways in China. However, no systematic algorithm yet exists to evaluate the consistency of the current distribution of short-circuit tests. A methodology is proposed in this paper to address this problem. Based on Kirchhoff’s current law and the generalized method of symmetrical components, the current deviations of the AT feeding systems are analysed and then normalized with the short-circuit current as they vary greatly with systems and short-circuit sites. It is also found that the short-circuit current varies with the calculation methods, and its unbiased standard deviation also reflects the consistency of the short-circuit test. The mean and maximum of the current deviations, as well as the unbiased standard deviation of the short-circuit current, show the consistency of the short-circuit test from different aspects,although the last two items are highly relevant. Therefore, a unified evaluation index is defined as the sum of the three items, and then applied in two case studies to test its performance. The results show that, the proposed index canclearly distinguish the consistency of the short-circuit tests and may be used to sort the short-circuit tests for fault location systems. Besides, some short-circuit tests may have very poor consistency indices, and thus are not applicable to the tuning of fault location systems. In the authors’ opinion, the determination of the threshold of the proposed index needs further investigation.
基金This project is supported by National 211 Project.
文摘A component synthesis vibration suppression (CSVS) method for flexible structures is put forward. It can eliminate any unwanted orders of flexible vibration modes while achieves desired rigid motion. This method has robustness to uncertainty of frequency, which makes it practical in engineering. Several time optimal and time-fuel optimal control strategies are designed for a kind of single flexible link. Simulation results validate the feasibility of our method.
文摘Symmetrical components method is employed in analysis of the characteristic motor faults.Motor protection method is put forward based on detecting positive sequence,negative sequence and zero sequence current.And problems of lack of motor overload capacity in existing mining motor protection system,impact of dynamic current on stage and definite-time delay operation and inaccuracy of criterion phase failure protection are analyzed.The unbalanced faults protection and inverse-time overload protection,which can make protection time change with the current movement,are proposed.The above problems can be solved,and the reliability and intelligent of coal shearer are improved.
文摘The restaurant is traditional industry of the third industry in our country. Since May 1 in this year, China's Restaurant Industry to implement "replace the business tax with value-added tax" policy and change to pay VAT. This paper analyzed the possible impact on restaurant industry after the" replace the business tax with value-added tax" based on the understanding of the tax theory of" replace the business tax with value-added tax" and the tax compliance in our country. At the same time, this paper used the statistical analysis of data on the investigation of 100 samples of the VAT cognitive degree on "replace the business tax with value-added tax", using principal component analysis method to analyze and evaluate factors on the awareness of the restaurant owner to "replace the business tax with value-added tax" tax policy. After multiple comparison made on the sample data, this paper summarized and analyzed the countermeasures of improving the pushing effect in restaurant industry "replace the business tax with VAT ".
文摘The paper reports quality analysis and evaluation at 6 - 10/0.4 kV low-voltage distribution grids in Uzbekistan. Power quality frequently does not correspond to the rated value which is largely due to unbalanced phase loading in grids and which also results in increased power loss. The study of the asymmetrical operating modes of the rural distribution networks of 0.4 kV was conducted in three steps: measurement, calculations and analysis of relevant data;providing practical guidelines and finally, implementing instruments to normalize grid operation. Measuring was conducted using certified instrumentation analyzer “MALIKA” designed by authors. The study and analysis of additional power losses as the function of indicators of asymmetrical features of voltage and current in operating 0.4 kV grids reveals that, quality of electric power at grids under investigation, merely does not meet the requirements of the Interstate Standard.
基金supported by the Opening Foundation of Jiangsu Key Laboratory of Environment Change&Ecological ConstructionNational Natural Science Foundation of China:[Grant Number 41372182]Research Center of Resource-exhausted Cities Transformation and Development:[Grant Number Kf2013y08]
文摘This paper proposes two concepts: the ecological footprint component index(EFCI) and the biocapacity component index(BCCI), based on the ecological footprint(EF) and Shannon entropy approaches. Per capita EFCI and BCCI in China 1949-2013 are analyzed using empirical mode decomposition(EMD). Nonlinear models of per capita EFCI and BCCI in China 1949-2013 are presented and their cycles and predictions from 2014 to 2023 are analyzed. The results over the last 65 years show:(1) EFCI in China has increased constantly with fluctuations, while BCCI has slowly decreased. Their annual change rates are 2.81% and-1.26%, respectively. The increasing EFCI indicates a gradual improvement in China's sustainable development potential; the decreasing BCCI indicates severe environmental and population challenges.(2) The cycles of per capita EFCI have periods of 5.4 and 16.3 years, while cycles of per capita BCCI have periods of 3.6, 13,and 21.7 years. The predictive models indicate that EFCI will first decrease, reaching 0.02725 in2014, and will subsequently increase to 0.03261 in 2021. BCCI will increase, reaching 0.01365 in2014 and 0.01541 in 2022. EFCI and BCCI will reach 0.03037 and 0.01537, respectively, in 2023.Policymakers should ensure that the EFCI and BCCI increase in 2023.
文摘Current multiscale topology optimization restricts the solution space by enforcing the use of a few repetitive microstructures that are predetermined,and thus lack the ability for structural concerns like buckling strength,robustness,and multi-functionality.Therefore,in this paper,a new multiscale concurrent topology optimization design,referred to as the self-consistent analysis-based moving morphable component(SMMC)method,is proposed.Compared with the conventional moving morphable component method,the proposed method seeks to optimize both material and structure simultaneously by explicitly designing both macrostructure and representative volume element(RVE)-level microstructures.Numerical examples with transducer design requirements are provided to demonstrate the superiority of the SMMC method in comparison to traditional methods.The proposed method has broad impact in areas of integrated industrial manufacturing design:to solve for the optimized macro and microstructures under the objective function and constraints,to calculate the structural response efficiently using a reduced-order model:self-consistent analysis,and to link the SMMC method to manufacturing(industrial manufacturing or additive manufacturing)based on the design requirements and application areas.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.51978500 and 51538002).
文摘The derivation and validation of analytical equations for predicting the tensile initial stiffness of threadfixed one-side bolts(TOBs),connected to enclosed rectangular hollow section(RHS)columns,is presented in this paper.Two unknown stiffness components are considered:the TOBs connection and the enclosed RHS face.First,the trapezoidal thread of TOB,as an equivalent cantilevered beam subjected to uniformly distributed loads,is analyzed to determine the associated deformations.Based on the findings,the thread-shank serial-parallel stiffness model of TOB connection is proposed.For analysis of the tensile stiffness of the enclosed RHS face due to two bolt forces,the four sidewalls are treated as rotation constraints,thus reducing the problem to a two-dimensional plate analysis.According to the load superposition method,the deflection of the face plate is resolved into three components under various boundary and load conditions.Referring to the plate deflection theory of Timoshenko,the analytical solutions for the three deflections are derived in terms of the variables of bolt spacing,RHS thickness,height to width ratio,etc.Finally,the validity of the above stiffness equations is verified by a series of finite element(FE)models of T-stub substructures.The proposed component stiffness equations are an effective supplement to the component-based method.
基金National Natural Science Foundation of China(90716006, 10902006)Research Fund for the Doctoral Program of Higher Education of China (20091102110015)
文摘The flutter characteristics of an actuator-fin system are investigated with structural nonlinearity and dynamic stiffness of the electric motor. The component mode substitution method is used to establish the nonlinear governing equations in time domain and frequency domain based on the fundamental dynamic equations of the electric motor and decelerator. The existing describing function method and a proposed iterative method are used to obtain the flutter characteristics containing preload freeplay nonlinearity when the control command is zero. A comparison between the results of frequency domain and those of time domain is studied. Simulations are carried out when the control command is not zero and further analysis is conducted when the freeplay angle is changed. The results show that structural nonlinearity and dynamic stiffness have a significant influence on the flutter characteristics. Limit cycle oscillations (LCOs) are observed within linear flutter boundary. The response of the actuator-fin system is related to the initial disturbance. In the nonlinear condition, the amplitude of the control command has an influence on the flutter characteristics.
基金supported by the National Natural Sciences Foundation of China(Grant Nos.91116005 and 10902006)
文摘The modeling method and identified method adapted to multi-degree-of-freedom structures with strucrural nonlinearities are established.The component mode synthesis method is used to establish the nonlinear governing equations by extending the connected relationships.Based on the modeling method,the Hilbert transform method is applied to identify the nonlinear stiffness of multi-degree-of-freedom structures.Nonlinear analysis and identification of a typical folding wing configuration with three freeplay hinges are investigated.The nonlinear governing equation is established based on present methods and the computing results of different stiffness are checked by finite element programming.In order to illustrate the influence of the nonlinearities,the frequency response characteristics of the structure are analyzed and Hilbert transform is performed.The Hilbert transform identification method is utilized to identify the nonlinear stiffness of nonlinear hinges in the time domain and several parametric studies are performed.In addition,the comparison of response is made to illustrate the feasibility of the methods.The results show that the extending component mode synthesis method in the present work can be used to establish the governing equation with structural nonlinearities.Based on the modeling method,the Hilbert transform identified method can be extended to multi-degree-of-freedom structures accurately.
基金the financial support of the Research Fund for Coal and Steel of the European Community within project ROBUSTFIRE:“Robustness of Car Parks against Localised Fire,”Grant No RFSR-CT-2008-00036The related discussions and input of our collaborators from the University of Liege,University of Coimbra,CSTB,Greisch Ingenierie,and CTICM France are gratefully acknowledged.
文摘Joints play an important role in providing ductility for steel-composite structures subject to extreme loading conditions,such as blast,fire and impact.Due to sound energy dissipation capability and fabrication efficiency,semi-rigid joints have increasingly received attention during the last decade.This paper presents a component approach for modeling semi-rigid beam-to-column joints based on Eurocode3,where the post-elastic response,including component strain hardening and ultimate rotational capacity,is also considered.Failure criteria are defined based on the ultimate deformation capacity of components and bolt-rows.The model enables a direct integration of joint response into global frame models with the consideration of axial deformability,such that the interaction between bending moment and axial force within the joints can be realistically captured.In addition,elevated temperature can be considered in the joint model via the degradation of the component response.Through comparisons with available test data,the joint model is shown to have good accuracy,and the failure criteria are found to be reliable yet conservative.The strain hardening response of components is shown to have significant influence on the ultimate bending capacity of the joints,while neglecting it usually leads to a conservative prediction.
基金supported in part by the National Natural Science Foundation of China(No.51807112)。
文摘Direct current(DC)bus voltage stability is essential for the stable and reliable operation of a DC system.If an oscillation source can be quickly and accurately localized,the oscillation can be adequately eliminated.We propose a method based on the power spectral density for identifying the voltage oscillation source.Specifically,a DC distribution network model combined with the component connection method is developed,and the network is separated into multiple power modules.Compared with a conventional method,the proposed method does not require determining the model parameters of the entire power grid,which is typically challenging.Furthermore,combined with a novel judgment index,the oscillation source can be identified more intuitively and clearly to enhance the applicability to real power grids.The performance of the proposed method has been evaluated using the MATLAB/Simulink software and PLECS RT Box experimental platform.The simulation and experimental results verify that the proposed method can accurately identify oscillation sources in a DC distribution network.