期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Properties and Microstructure of Polymer Emulsions Modifi ed Fibers Reinforced Cementitious Composites 被引量:4
1
作者 吴英 孙乾耀 +1 位作者 KONG Lian FANG He 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第4期795-802,共8页
The synthesis and characterization of a new class of cementitious composites filled with polymer emulsions were investigated, and their superior mechanical strength and durability properties compared to composites dev... The synthesis and characterization of a new class of cementitious composites filled with polymer emulsions were investigated, and their superior mechanical strength and durability properties compared to composites devoid of fi llers were reported. Polymer emulsions were utilized to mechanically reinforce the composite and bridge the cement, fly ash, aggregate and fibers. The results reveal that the epoxy emulsion and poly(ethylene-co-vinyl acetate) emulsion markedly enhance the mechanical and durability properties of cemetitious composites. The fi bers can be pulled out in the form of slip-hardening and the abrasion phenomenon can be observed clearly on the surface of the fibers. The hydration extent of cement is higher than that of the pristine composites. The polymer modified cementitious composites designed on micromechanics, have fl exibility and plasticity which could be applied for a novel form of multifunctional materials with a range of pipeline coatings applications. 展开更多
关键词 polymer emulsion cementitious composites fi ber microstructure
下载PDF
Preparation of Chitosan/Poly(L-Lactide) Porous Composite Scaffolds
2
作者 CHEN Pin NIU Xu-feng +4 位作者 SHE Zhen-ding ZHOU Gang TAN Rong-wei WANG Jiang-xue FAN Yu-bo 《Chinese Journal of Biomedical Engineering(English Edition)》 2012年第2期67-72,共6页
This research investigates the formation of chitosan/poly (L-lactide) (CS/PLLA) porous composite scaffold using a novel emulsion freeze-drying technique. First, an oil in-water (O/W) emulsification system was us... This research investigates the formation of chitosan/poly (L-lactide) (CS/PLLA) porous composite scaffold using a novel emulsion freeze-drying technique. First, an oil in-water (O/W) emulsification system was used in the presence of surfactant Tween-80, in which CS solution was used as the water phase and PLLA solution was used as the oil phase. The emulsion was observed by inverted microscope (× 200). The emulsion droplet was spherical and uniform in size. FT-IR analysis revealed that there were hydrogen bonding interactions between CS and PLLA components. The microstructure and physical properties of the scaffolds were also analyzed. The SEM results showed that composite scaffolds formed well interconnected pore structure and homogenous distribution of CS and PLLA. When the content of PLLA reached 50%, the porosity of CS/PLLA composite scaffolds were between 83 %-91% and density in the range of 0.047 to 0.11 g/era3. The porosity showed a slight decrease and the density increased with the increase of PLLA dose. The compressive strength increased from 0.32 to 0.43 MPa, while the compressive modulus increased from 1.99 to 3.91 MPa as the PLLA contents increased from 10% to 50%. 展开更多
关键词 BIOMATERIALS ehitosan poly(L-laeticle) emulsion composite
下载PDF
Preparation of polyacrylamide/silica composite capsules by inverse Pickering emulsion polymerization 被引量:5
3
作者 Kui Zhang Qian Wang +3 位作者 Hong Meng Mian Wang Wei Wu Jianfeng Chen 《Particuology》 SCIE EI CAS CSCD 2014年第3期12-18,共7页
Polyacrylamide/silica (PAM/SiO2) composite capsules were synthesized by inverse Pickering emulsion polymerization. Silica nanoparticles modified with methacryloxypropyltrimethoxysilane (MPS) were used as a stabili... Polyacrylamide/silica (PAM/SiO2) composite capsules were synthesized by inverse Pickering emulsion polymerization. Silica nanoparticles modified with methacryloxypropyltrimethoxysilane (MPS) were used as a stabilizer. Transmission electron microscopy (TEM), scanning electron microscopy (SEM). Fourier transform infrared (FTIR) spectroscopy, and thermal gravimetric analysis (TGA) were used to characterize the morphology and composition of the composite capsules. SEM and TEM images showed that capsules consisted of a particle shell and a polymer inner layer. The capsule size depends on the nanoparticle concentration in the continuous phase. The composite rigidity largely depends on the acrylamide concentration. FTIR and TGA results indicated the existence of polyacrylamide and SiO2 in the composite particles. Aqueous Hg(ll) removal testing by the PAM/SiO2 composite capsules indicated promising potential for removing heavy metal ions from wastewater. 展开更多
关键词 PAM/SiO2 composite capsule Inverse Picketing emulsion polymerization Mercury ion Adsorption
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部