Using zircon,boric acid and carbon black as starting materials,ZrB_(2)-ZrO_(2)-SiC composite powder was synthesized by calcining at 1500℃in flowing argon atmosphere.The effects of the soaking time(3,6 and 9 h)and the...Using zircon,boric acid and carbon black as starting materials,ZrB_(2)-ZrO_(2)-SiC composite powder was synthesized by calcining at 1500℃in flowing argon atmosphere.The effects of the soaking time(3,6 and 9 h)and the addition of additive AlF_(3)(0,0.5%,1.0%,1.5%,2.0%and 2.5%,by mass)on the phase composition and the microstructure of the synthesized products were investigated.The results show that:(1)ZrB_(2)-ZrO_(2)-SiC composite powder can be synthesized by carbothermal reduction at 1500℃in flowing argon atmosphere;ZrB_(2) and ZrO_(2) are granular-like,and SiC crystals are fiberous;(2)with the soaking time increasing,the amount of ZrB_(2) increases,the amounts of m-ZrO_(2) and SiC decrease,and the total amount of non-oxides ZrB_(2),SiC and ZrC gradually increases;the optimal soaking time is 3 h;(3)compared with the sample without AlF_(3),the sample with 0.5% AlF_(3) has decreased m-ZrO_(2)amount,noticeably increased ZrB_(2) amount but decreased SiC amount;however,when the addition of AlF_(3) increases from 0.5%to 2.5%,the m-ZrO_(2) amount increases,the ZrB_(2)amount decreases,and the SiC amount changes slightly;the optimum AlF_(3)addition is 0.5%.展开更多
Cu(NO3)(2) and (NH4)(6)H(2)W(12)O(40)center dot 4H(2)O were used to prepare W/Cu nanosized composite powder by sol-gel technique. The influences of heat treatment process, pH value of the solution and the amount of an...Cu(NO3)(2) and (NH4)(6)H(2)W(12)O(40)center dot 4H(2)O were used to prepare W/Cu nanosized composite powder by sol-gel technique. The influences of heat treatment process, pH value of the solution and the amount of an addition agent on particle size were investigated by DSC, XRD and TEM. The results show that, at a certain heat treatment temperature, the W/Cu nanoparticle size increases with the pH value or the amount of the addition agent increasing.展开更多
Pure WC-6%Co nanosized composite powders were synthesized via a low-temperature method.The effects of carbon source on microstructure characteristic of composite powders were investigated,and the effects of heat-treat...Pure WC-6%Co nanosized composite powders were synthesized via a low-temperature method.The effects of carbon source on microstructure characteristic of composite powders were investigated,and the effects of heat-treatment parameter on carbon content of composite powders were also discussed.The results of SEM and XRD revealed that the carbon decomposing from glucose was more active than carbon black.Therefore,WC-Co nanosized composite powders could be synthesized at 900°C for 1 h under a hydrogen atmosphere.The individual WC grains were bonded together into a long strip under the action of cobalt.The results of carbon analysis revealed that the total carbon content decreased with the increase of the temperature in the range of 800-1000°C.Moreover,the total carbon content and the compounded carbon increased with the increase of the flow rate of H2 in the range of 1.1-1.9 m3/h.展开更多
Indium tin oxide (ITO) nano-particles were prepared directly using waste ITO target, which had been coated by magnetron controlled sputtering. The waste ITO target was cleaned with de-ionized water, and then dissolv...Indium tin oxide (ITO) nano-particles were prepared directly using waste ITO target, which had been coated by magnetron controlled sputtering. The waste ITO target was cleaned with de-ionized water, and then dissolved in acid, filtrated, neutralized, manipulated through azeotropic distillation and finally dried, and in this way the precursor of indium tin hydroxide was obtained. The nanosized rio composite powder was prepared after the precursor heat-treated at 500℃ for 2 h. TEM images show a narrow distribution of particle size is 5-20 nm and the particle size can be controlled. Its granule has a spherical shape and the dispersion of the particle is well. X-ray diffraction (XRD) patterns indicate the only cubic In2O3 phase in the ITO powder hot-treated at 500℃. The purity of ITO composite powder is 99.9907%. The content of radium within filtrate was detected by using the EDTA titration of determination of indium in the ITO powder and ITO target. Appropriate amount of SnCl4.5H2O was dissolved in the filtrate, and then ITO powder containing 10 wt.% SnO2 was successfully prepared by heat-treating.展开更多
Based on the characteristic of high energy milling and the micromechanics of composite material, a plastic constitutive equation is implemented for milled composite powders. To check the equation, the extrusion of Ti/...Based on the characteristic of high energy milling and the micromechanics of composite material, a plastic constitutive equation is implemented for milled composite powders. To check the equation, the extrusion of Ti/Al composite powders prepared by high energy milling was simulated. It was from the numerical analysis that the predicted extrusion pressure mounted up with milling time and extrusion ratio increasing, which was perfect agreement with experimental results.展开更多
2wt%TiB_(2)/Cu composite powders were fabricated in situ by reactive gas atomization.The fabricated composite powder exhibits high sphericity,and the powder sizes range from 5μm to 150μm.The morphology of the Cu mat...2wt%TiB_(2)/Cu composite powders were fabricated in situ by reactive gas atomization.The fabricated composite powder exhibits high sphericity,and the powder sizes range from 5μm to 150μm.The morphology of the Cu matrix and the distribution of the TiB2 particles in the composite powders vary with the powder size.The critical transitions of interface morphologies from dendritic-to-cellular and cellular-to-planar interfaces occurs when the composite powder sizes decrease to 34μm and 14μm,respectively.Compared with pure Cu droplets,the composite droplets undergo critical transition of the interface morphologies at a smaller droplet size corresponding to a higher cooling rate because the existence of TiB2 particles can cause instability in the advancing solidification front and heterogeneous nucleation.With decreasing powder size,the extent of the TiB_(2) particle interdendritic segregation decreases as the result of enhanced engulfment of TiB2 particles by the advancing solidification front.展开更多
The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me...The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me 3Si) 2NH) (Me:CH 3) and SiH 4 C 2H 2 respectively by a laser induced gas phase reaction. The complex permittivities of the nano Si/C/N composite powder and nano SiC powder were measured between 8 2GHz and 12 4GHz. The real and imaginary parts of the complex permittivities of nano Si/C/N composite powder are much higher than those of nano SiC powder. The SiC microcrystalline in the nano Si/C/N composite powder dissolved a great deal of nitrogen. The local structure around Si atoms changed by introducing N into SiC. Carbon atoms around Si were substituted by N atoms. So charged defects and quasi free electrons moved in response to the electric field, diffusion or polarization current resulted from the field propagation. The high ε″and loss factor tgδ(ε″/ε′) of Si/C/N composite powder were due to the dielectric relaxation.展开更多
In order to improve oxidation resistance and ther- mal shock resistance of Al2O3-C refractories, two groups of specimens were prepared with phenolic resin as binder, adding 0, 2 wt% , 4 wt% and 6 wt% commercial SiC or...In order to improve oxidation resistance and ther- mal shock resistance of Al2O3-C refractories, two groups of specimens were prepared with phenolic resin as binder, adding 0, 2 wt% , 4 wt% and 6 wt% commercial SiC or ZrO2-SiC composite powder synthesized from zircon respectively to Al2O3- C refractories, pressing at 200 MPa, drying fully at 250℃, and then carbon embedded firing at 1400℃ for 2 h. Oxidation resistance and thermal shock resistance were researched, phase composition was analyzed by XRD. The results showed that the oxidation of SiC in additives could protect carbon in specimens effectively and thus decreased the mass loss ratio and oxidation area, and improved the oxidation resistance of the specimen. Thermal shock resistance was improved owing to the micro crack toughening of ZrO2 and grain toughening of SiC. In this experiment, the specimens with 6 wt% ZrO2 -SiC composite powder or 6 wt% SiC powder had the best oxidation resistance and thermal shock resistance.展开更多
Oxidation of carbon is the main problem or Al2O3 - C refractories. ZrO2 - nitrides composite powder was synthesized through carbothermal reduction and nitridation (CRN) of zircon. The effect of ZrO2 - nitrides compo...Oxidation of carbon is the main problem or Al2O3 - C refractories. ZrO2 - nitrides composite powder was synthesized through carbothermal reduction and nitridation (CRN) of zircon. The effect of ZrO2 - nitrides composite powder addition on oxidation resistance of the Al2O3 - C refractories was investigated by measuring the thickness of oxidation layer. Phase compositions of the Al2O3 - C refractories before and after oxidation were investigated by X-ray diffraction ( XRD ). Results show that the oxidation resistance of the Al2O3 - C refractories can be obviously improved by adding the synthesized ZrO2 - nitrides composite powder. The formation of mullite and zircon in the oxidation layer results in the densification of oxidation layer, which prevents oxygen diffusion and bnproves the oxidation resistance of the Al2O3 - C refractories.展开更多
Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flak...Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flake graphite powders that were evenly loaded with tungsten copper composite powder(RMCBCs-W@Cu)exhibited a low wear rate of 1.63 mm^(3)/h,exhibiting 48.6%reduction in the wear rate relative to RCMBCs without additives(RMCBCs-0).In addition,RMCBCs-W@Cu achieved a low friction coefficient of 0.243 and low electric spark grade.These findings indicate that tungsten copper composite powders provide particle reinforcement and generate a gradation effect for the epoxy resin(i.e.,connecting phase)in RMCBCs,which weakens the wear of RMCBCs caused by fatigue under a cyclic current-carrying wear.展开更多
In order to compare the spark plasma sintedng (SPS) process plus hot isostatic press (HIP) with vacuum sintedng plus HIP, an investigation was carried out on the topography, microstructure and gain size distributi...In order to compare the spark plasma sintedng (SPS) process plus hot isostatic press (HIP) with vacuum sintedng plus HIP, an investigation was carried out on the topography, microstructure and gain size distribution of nanocrystalline WC-10Co composite powder and the sintered specimens prepared by SPS plus HIP and by vacuum sintering plus HIP by means of atomic force microscopy (AFM). The mechanical properties of the sintered specimens were also investigated. It is very easy to find cobalt lakes in the specimen prepared by vacuum sintering plus HIP process. But the microstructure of the specimen prepared by SPS plus HIP is more homogeneous, and the grain size is smaller than that prepared by vacuum sintering plus HIP. The WC-10Co ultrafine cemented carbide consolidated by SPS plus HIP can reach a relative density of 99.4%, and the transverse rupture strength (TRS) is higher than 3540 MPa, the Rockwell A hardness (HRA) is higher than 92.8, the average grain size is smaller than 300 nm, and the WC-10Co ultrafine cemented carbide with excellent properties is achieved. The specimen prepared by SPS with HIP has better properties and microstructure than that prepared by vacuum sintering with HIP.展开更多
Composite powder prepared of calcium oxide stabilzed ZrO2(CSZ) and NiCr by vacuum sintering is studied,and the effect of additive TiO2 on its properties is discussed. The morphology and phases of the powder were measu...Composite powder prepared of calcium oxide stabilzed ZrO2(CSZ) and NiCr by vacuum sintering is studied,and the effect of additive TiO2 on its properties is discussed. The morphology and phases of the powder were measured and determined by SEM. EPMA, XRD methods and the testing of flowability, bulk density and microhard-ness. The results show that the metallic components in the powder are in homogeneous distribution , the flowability, bulk density and microhardness are superior to the ZrO2-NiCr powder prepared by mechanically mixing. All components in the coating made of the composite powder are well-distributed because of avoiding segregation in the middle of mixing. It proves that the composite powder is an excellent material for plasma spraying.展开更多
The effects of microwave sintering and conventional H2 sintering on the microstructure and properties of W-15Cu alloy using ultrafine W-15Cu composite powder fabricated by spray drying & calcining-continuous reductio...The effects of microwave sintering and conventional H2 sintering on the microstructure and properties of W-15Cu alloy using ultrafine W-15Cu composite powder fabricated by spray drying & calcining-continuous reduction technology were investigated. In comparison to the conventional HE sintering processing, microwave sintering to W-15Cu can be achieved at lower sintering temperature and shorter sintering time. Furthermore, higher performances in microwave sintered compacts were obtained, but high microwave sintering temperature or long microwave sintering time could result in coarser microstructures.展开更多
A direct electroless copper (Cu) coating on tungsten powders method requiring no surface treatment or stabilizing agent and using glyoxylic acid (C2H203) as a reducing agent was reported. The effects of copper sul...A direct electroless copper (Cu) coating on tungsten powders method requiring no surface treatment or stabilizing agent and using glyoxylic acid (C2H203) as a reducing agent was reported. The effects of copper sulfate concentration and the pH of the plating solution on the properties of the prepared W@Cu composite powders were assessed. The content of Cu in the composite powders was controlled by adjusting the concentration of copper sulfate in the electroless plating solution. A uniform, dense, and consistent Cu coating was obtained under the established optimum conditions (flow rate of C2H203 = 5.01 mL/min, solution pH = 12.25 and reaction temperature 45.35℃) by using central composite design method. In addition, the crystalline Cu coating was evenly dispersed within the W@Cu composite powders and Cu element in the coating existed as Cu~. The formation mechanism for the W@Cu composite powders by electroless plating in the absence of surface treatment and stabilizing agent was also proposed.展开更多
TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM...TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses show the presence of TiB2 and Al2O3 only in the composite powders produced by SHS. The powders are uniform and free-agglomerate. Transmission electron microscopy (TEM) and high resolution electron microscopy (HREM) observation of microstructure of the composite powders indicate that the interfaces of the TiB2-Al2O3 bond well, without any interfacial reaction products. It is proposed that the good interfacial bonding of the composite powders can be resulted from the TiB2 particles crystallizing and growing on the Al2O3 particles surface with surface defects acting as nucleation centers.展开更多
ZrO2 sizing nozzles with a basic Jormulation were prepared using 45% (by mass, the same hereinafter ) ( Mg, Y) - PSZ aggregate, 55% ( Mg, Y) - PSZ fines and 5% PVA binder. Al2O3 - ZrO2 composite powders ( 3%, ...ZrO2 sizing nozzles with a basic Jormulation were prepared using 45% (by mass, the same hereinafter ) ( Mg, Y) - PSZ aggregate, 55% ( Mg, Y) - PSZ fines and 5% PVA binder. Al2O3 - ZrO2 composite powders ( 3%, 6%, 9% and 12% ) prepared by sol - gel method were added to replace the equal amount of ( Mg, Y) - PSZfines. Effects of Al2O3 - ZrO2 composite powders on physical properties, phase composition and microstructure of the ZrO2 sizing nozzles were studied. The results show that: the performances of the modified sizing nozzles with 3% Al2O3 - ZrO2 composite powder are better than those of the nobles without composite powder used in current production process, and the thermal shock resistance of the ,former nozzles is six times of that of the latter one.展开更多
Al2O3-SiC-C specimens were prepared using white fused corundum (3-1,≤1 and ≤0.044 mm),Al2O3-SiC composite powders (d50 ≤ 5 μm),α-Al2O3 micropowder (d50 =1.2 μm),SiC powder (≤ 0.044 mm),flake graphite (...Al2O3-SiC-C specimens were prepared using white fused corundum (3-1,≤1 and ≤0.044 mm),Al2O3-SiC composite powders (d50 ≤ 5 μm),α-Al2O3 micropowder (d50 =1.2 μm),SiC powder (≤ 0.044 mm),flake graphite (≤ 0.088 mm),Si powder (d50 =42.8 μm) and B4C powder (d50 ≤10 μm) as main starting materials,and thermosetting phenolic resin as binder.4%,8%,12% and 16% (in mass,the same hereinafter) of Al2O3-SiC composite powders substituted the same quantity of α-Al2O3 micropowder + SiC powder.Effects of composite powder additions on apparent porosity,bulk density,cold modulus of rupture,cold crushing strength,hot modulus of rupture (1 400 ℃),thermal shock resistance (1 100 ℃,water quenching) and oxidation resistance (1 000 and 1 500 ℃) of Al2O3-SiC -C specimens after 180 ℃ curing,1 000 ℃ 3 h carbon-embedded firing and 1 500 ℃ 3 h carbon-embedded firing,respectively,were researched.The results indicate that:(1) with the increase of Al2O3-SiC composite powder,cold strengths of the cured specimens decline,those of the specimens fired at 1 000 ℃ change a little,and those of the specimens fired at 1 500 ℃ change a little except for an obvious improvement of cold crushing strength ; (2) with the increase of Al2O3-SiC composite powder,hot modulus of rupture at 1 400 ℃ decreases and thermal shock resistance enhances significantly; (3) when Al2O3-SiC composite powder addition is 4%,the oxidation resistance at 1 500 ℃ is the best,and the reason may be the composite powder is finer and more active,which is beneficial to form dense mullite protective layer to retard the O2 diffusion into the specimens.展开更多
This work aims at solving the problems of difficult dispersion,easy oxidation and high cost of nano carbon during application,carbon/magnesium aluminate spinel(C/MgAl_(2)O_(4))composite powders were prepared using MgC...This work aims at solving the problems of difficult dispersion,easy oxidation and high cost of nano carbon during application,carbon/magnesium aluminate spinel(C/MgAl_(2)O_(4))composite powders were prepared using MgC2O4·2H2O,MgO2,Al2O3 powder,and Al powder as raw materials by combustion synthesis.The results indicate that with the maximum MgC2O4·2H2O addition of 33.34 mass%,the prepared powder contains 1.17 mass%of carbon and carbon distributes among spinel grains.The MgAl_(2)O_(4)spinel shows both granular and rod-like morphologies.The granular MgAl_(2)O_(4)spinel is generated from mutual diffusion between MgO and Al2O3;while the rod-like MgAl_(2)O_(4)spinel is mainly formed by the vapor-solid growth mechanism from Mg vapor and Al2O3.展开更多
The flexible product shape of additive manufacturing(AM)is attractive,but the process suffers from a lack of material property diversity due to a limited number of printable alloys and post-processing options.To overc...The flexible product shape of additive manufacturing(AM)is attractive,but the process suffers from a lack of material property diversity due to a limited number of printable alloys and post-processing options.To overcome this problem,the AM of metal matrix composites(MMCs)is a highly suitable solution because the properties of MMC can be tailored using various reinforcements.Therefore,extensive research has been conducted on the AM of MMCs;however,the major huddle for this process has been the difficulties in preparing feedstock powder and operating the AM process.This study introduces an easily synthesizable core-shell composite powder,which was fabricated by a recently developed process called the SMART process.The core-shell powder has a novel morphology,consisting of a metal core and composite shell,distinguishing it from the powders used in conventional AM approaches.Inconel 625/TiCp composites were fabricated using the core-shell composite powder,with various fractions of TiCp up to 10 vol.%.Compared to additive-manufactured Inconel 625,the additive-manufactured MMCs showed enhanced strength with significantly fewer defects.The results of this study may accelerate the application of MMC fabricated by AM,which offers superior properties and reliability compared to casting and powder metallurgy due to the higher degree of dislocation density and reinforcement dispersion.展开更多
The development of multiscale fiber-reinforced composite powders is an effective way to improve the mechanical properties and functionality of additively manufactured parts.Herein,a novel thermally induced precipitati...The development of multiscale fiber-reinforced composite powders is an effective way to improve the mechanical properties and functionality of additively manufactured parts.Herein,a novel thermally induced precipitation process is proposed for preparing multiscale fiber-reinforced powders.A systematic evaluation was conducted to explore the main factors influencing powder morphology,powder flow,and microstructure.In the powder-forming mechanism,the polymer matrix is coated on the microfiber,and a film of carbon nanotubes covers the powder surface,which is promoted by heterogeneous nucleation.The composite powders comprised polyamide 12,carbon fiber(CF),and carbon nanotubes,which have been successfully applied in powder bed fusion processes including selective laser sintering(SLS).Smooth flow and powder deposition were observed,and the composite components obtained via SLS were well-fabricated using the optimized process parameters.A CF loading ratio of up to 66.7 wt%and homogeneous fiber distribution within the matrix were successfully achieved.展开更多
基金supported by National Natural Science Foundation of China(52172031 and 51872266)Henan Provincial Science and Technology Research Project(222102230030).
文摘Using zircon,boric acid and carbon black as starting materials,ZrB_(2)-ZrO_(2)-SiC composite powder was synthesized by calcining at 1500℃in flowing argon atmosphere.The effects of the soaking time(3,6 and 9 h)and the addition of additive AlF_(3)(0,0.5%,1.0%,1.5%,2.0%and 2.5%,by mass)on the phase composition and the microstructure of the synthesized products were investigated.The results show that:(1)ZrB_(2)-ZrO_(2)-SiC composite powder can be synthesized by carbothermal reduction at 1500℃in flowing argon atmosphere;ZrB_(2) and ZrO_(2) are granular-like,and SiC crystals are fiberous;(2)with the soaking time increasing,the amount of ZrB_(2) increases,the amounts of m-ZrO_(2) and SiC decrease,and the total amount of non-oxides ZrB_(2),SiC and ZrC gradually increases;the optimal soaking time is 3 h;(3)compared with the sample without AlF_(3),the sample with 0.5% AlF_(3) has decreased m-ZrO_(2)amount,noticeably increased ZrB_(2) amount but decreased SiC amount;however,when the addition of AlF_(3) increases from 0.5%to 2.5%,the m-ZrO_(2) amount increases,the ZrB_(2)amount decreases,and the SiC amount changes slightly;the optimum AlF_(3)addition is 0.5%.
基金This Project was financially supported by the National Natural Science Foundation of China (No. 50471033).
文摘Cu(NO3)(2) and (NH4)(6)H(2)W(12)O(40)center dot 4H(2)O were used to prepare W/Cu nanosized composite powder by sol-gel technique. The influences of heat treatment process, pH value of the solution and the amount of an addition agent on particle size were investigated by DSC, XRD and TEM. The results show that, at a certain heat treatment temperature, the W/Cu nanoparticle size increases with the pH value or the amount of the addition agent increasing.
基金Project(51274107)supported by the National Natural Science Foundation of ChinaProject(2015FB127)supported by the Yunnan Natural Science Foundation,ChinaProject(2016P20151130003)supported by Analysis Foundation of Kunming University of Science and Technology,China
文摘Pure WC-6%Co nanosized composite powders were synthesized via a low-temperature method.The effects of carbon source on microstructure characteristic of composite powders were investigated,and the effects of heat-treatment parameter on carbon content of composite powders were also discussed.The results of SEM and XRD revealed that the carbon decomposing from glucose was more active than carbon black.Therefore,WC-Co nanosized composite powders could be synthesized at 900°C for 1 h under a hydrogen atmosphere.The individual WC grains were bonded together into a long strip under the action of cobalt.The results of carbon analysis revealed that the total carbon content decreased with the increase of the temperature in the range of 800-1000°C.Moreover,the total carbon content and the compounded carbon increased with the increase of the flow rate of H2 in the range of 1.1-1.9 m3/h.
基金This work was financially supported by the National "863 " program of China (No. 2004AA303542).
文摘Indium tin oxide (ITO) nano-particles were prepared directly using waste ITO target, which had been coated by magnetron controlled sputtering. The waste ITO target was cleaned with de-ionized water, and then dissolved in acid, filtrated, neutralized, manipulated through azeotropic distillation and finally dried, and in this way the precursor of indium tin hydroxide was obtained. The nanosized rio composite powder was prepared after the precursor heat-treated at 500℃ for 2 h. TEM images show a narrow distribution of particle size is 5-20 nm and the particle size can be controlled. Its granule has a spherical shape and the dispersion of the particle is well. X-ray diffraction (XRD) patterns indicate the only cubic In2O3 phase in the ITO powder hot-treated at 500℃. The purity of ITO composite powder is 99.9907%. The content of radium within filtrate was detected by using the EDTA titration of determination of indium in the ITO powder and ITO target. Appropriate amount of SnCl4.5H2O was dissolved in the filtrate, and then ITO powder containing 10 wt.% SnO2 was successfully prepared by heat-treating.
文摘Based on the characteristic of high energy milling and the micromechanics of composite material, a plastic constitutive equation is implemented for milled composite powders. To check the equation, the extrusion of Ti/Al composite powders prepared by high energy milling was simulated. It was from the numerical analysis that the predicted extrusion pressure mounted up with milling time and extrusion ratio increasing, which was perfect agreement with experimental results.
基金Funded by the National Natural Science Foundation of China(Nos.U1502274 and 51834009)。
文摘2wt%TiB_(2)/Cu composite powders were fabricated in situ by reactive gas atomization.The fabricated composite powder exhibits high sphericity,and the powder sizes range from 5μm to 150μm.The morphology of the Cu matrix and the distribution of the TiB2 particles in the composite powders vary with the powder size.The critical transitions of interface morphologies from dendritic-to-cellular and cellular-to-planar interfaces occurs when the composite powder sizes decrease to 34μm and 14μm,respectively.Compared with pure Cu droplets,the composite droplets undergo critical transition of the interface morphologies at a smaller droplet size corresponding to a higher cooling rate because the existence of TiB2 particles can cause instability in the advancing solidification front and heterogeneous nucleation.With decreasing powder size,the extent of the TiB_(2) particle interdendritic segregation decreases as the result of enhanced engulfment of TiB2 particles by the advancing solidification front.
文摘The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me 3Si) 2NH) (Me:CH 3) and SiH 4 C 2H 2 respectively by a laser induced gas phase reaction. The complex permittivities of the nano Si/C/N composite powder and nano SiC powder were measured between 8 2GHz and 12 4GHz. The real and imaginary parts of the complex permittivities of nano Si/C/N composite powder are much higher than those of nano SiC powder. The SiC microcrystalline in the nano Si/C/N composite powder dissolved a great deal of nitrogen. The local structure around Si atoms changed by introducing N into SiC. Carbon atoms around Si were substituted by N atoms. So charged defects and quasi free electrons moved in response to the electric field, diffusion or polarization current resulted from the field propagation. The high ε″and loss factor tgδ(ε″/ε′) of Si/C/N composite powder were due to the dielectric relaxation.
文摘In order to improve oxidation resistance and ther- mal shock resistance of Al2O3-C refractories, two groups of specimens were prepared with phenolic resin as binder, adding 0, 2 wt% , 4 wt% and 6 wt% commercial SiC or ZrO2-SiC composite powder synthesized from zircon respectively to Al2O3- C refractories, pressing at 200 MPa, drying fully at 250℃, and then carbon embedded firing at 1400℃ for 2 h. Oxidation resistance and thermal shock resistance were researched, phase composition was analyzed by XRD. The results showed that the oxidation of SiC in additives could protect carbon in specimens effectively and thus decreased the mass loss ratio and oxidation area, and improved the oxidation resistance of the specimen. Thermal shock resistance was improved owing to the micro crack toughening of ZrO2 and grain toughening of SiC. In this experiment, the specimens with 6 wt% ZrO2 -SiC composite powder or 6 wt% SiC powder had the best oxidation resistance and thermal shock resistance.
文摘Oxidation of carbon is the main problem or Al2O3 - C refractories. ZrO2 - nitrides composite powder was synthesized through carbothermal reduction and nitridation (CRN) of zircon. The effect of ZrO2 - nitrides composite powder addition on oxidation resistance of the Al2O3 - C refractories was investigated by measuring the thickness of oxidation layer. Phase compositions of the Al2O3 - C refractories before and after oxidation were investigated by X-ray diffraction ( XRD ). Results show that the oxidation resistance of the Al2O3 - C refractories can be obviously improved by adding the synthesized ZrO2 - nitrides composite powder. The formation of mullite and zircon in the oxidation layer results in the densification of oxidation layer, which prevents oxygen diffusion and bnproves the oxidation resistance of the Al2O3 - C refractories.
基金Projects(51772081,51837009,51971091)supported by the National Natural Science Foundation of ChinaProject(HFZL2018CXY003-4)supported by the Industry-University-Research Cooperation of AECC,ChinaProject(kq1902046)supported by the Major Science and Technology Projects of Changsha City,China。
文摘Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flake graphite powders that were evenly loaded with tungsten copper composite powder(RMCBCs-W@Cu)exhibited a low wear rate of 1.63 mm^(3)/h,exhibiting 48.6%reduction in the wear rate relative to RCMBCs without additives(RMCBCs-0).In addition,RMCBCs-W@Cu achieved a low friction coefficient of 0.243 and low electric spark grade.These findings indicate that tungsten copper composite powders provide particle reinforcement and generate a gradation effect for the epoxy resin(i.e.,connecting phase)in RMCBCs,which weakens the wear of RMCBCs caused by fatigue under a cyclic current-carrying wear.
基金This work was financially supported by the Postdoctoral Science Foundation of China (No.2003034504),the Open Foundation ofState Key Laboratory of Advanced Technology for Materials Synthesis & Processing, Wuhan University of Technology (2004-2005)and the National High-Tech Research and Development Program of China (No.2002AA302504).
文摘In order to compare the spark plasma sintedng (SPS) process plus hot isostatic press (HIP) with vacuum sintedng plus HIP, an investigation was carried out on the topography, microstructure and gain size distribution of nanocrystalline WC-10Co composite powder and the sintered specimens prepared by SPS plus HIP and by vacuum sintering plus HIP by means of atomic force microscopy (AFM). The mechanical properties of the sintered specimens were also investigated. It is very easy to find cobalt lakes in the specimen prepared by vacuum sintering plus HIP process. But the microstructure of the specimen prepared by SPS plus HIP is more homogeneous, and the grain size is smaller than that prepared by vacuum sintering plus HIP. The WC-10Co ultrafine cemented carbide consolidated by SPS plus HIP can reach a relative density of 99.4%, and the transverse rupture strength (TRS) is higher than 3540 MPa, the Rockwell A hardness (HRA) is higher than 92.8, the average grain size is smaller than 300 nm, and the WC-10Co ultrafine cemented carbide with excellent properties is achieved. The specimen prepared by SPS with HIP has better properties and microstructure than that prepared by vacuum sintering with HIP.
文摘Composite powder prepared of calcium oxide stabilzed ZrO2(CSZ) and NiCr by vacuum sintering is studied,and the effect of additive TiO2 on its properties is discussed. The morphology and phases of the powder were measured and determined by SEM. EPMA, XRD methods and the testing of flowability, bulk density and microhard-ness. The results show that the metallic components in the powder are in homogeneous distribution , the flowability, bulk density and microhardness are superior to the ZrO2-NiCr powder prepared by mechanically mixing. All components in the coating made of the composite powder are well-distributed because of avoiding segregation in the middle of mixing. It proves that the composite powder is an excellent material for plasma spraying.
基金Funded by the Project for Science and Technology Plan of Wuhan City(200910321092)the Youth Science Plan for Light of the Morning Sun of Wuhan City (200750731270)
文摘The effects of microwave sintering and conventional H2 sintering on the microstructure and properties of W-15Cu alloy using ultrafine W-15Cu composite powder fabricated by spray drying & calcining-continuous reduction technology were investigated. In comparison to the conventional HE sintering processing, microwave sintering to W-15Cu can be achieved at lower sintering temperature and shorter sintering time. Furthermore, higher performances in microwave sintered compacts were obtained, but high microwave sintering temperature or long microwave sintering time could result in coarser microstructures.
基金Funded by the National Natural Science Foundation of China(Nos.51202175 and 11072228)the National 111 Project(No.B13035)
文摘A direct electroless copper (Cu) coating on tungsten powders method requiring no surface treatment or stabilizing agent and using glyoxylic acid (C2H203) as a reducing agent was reported. The effects of copper sulfate concentration and the pH of the plating solution on the properties of the prepared W@Cu composite powders were assessed. The content of Cu in the composite powders was controlled by adjusting the concentration of copper sulfate in the electroless plating solution. A uniform, dense, and consistent Cu coating was obtained under the established optimum conditions (flow rate of C2H203 = 5.01 mL/min, solution pH = 12.25 and reaction temperature 45.35℃) by using central composite design method. In addition, the crystalline Cu coating was evenly dispersed within the W@Cu composite powders and Cu element in the coating existed as Cu~. The formation mechanism for the W@Cu composite powders by electroless plating in the absence of surface treatment and stabilizing agent was also proposed.
文摘TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses show the presence of TiB2 and Al2O3 only in the composite powders produced by SHS. The powders are uniform and free-agglomerate. Transmission electron microscopy (TEM) and high resolution electron microscopy (HREM) observation of microstructure of the composite powders indicate that the interfaces of the TiB2-Al2O3 bond well, without any interfacial reaction products. It is proposed that the good interfacial bonding of the composite powders can be resulted from the TiB2 particles crystallizing and growing on the Al2O3 particles surface with surface defects acting as nucleation centers.
基金financially supported by National Natural Science Foundation of China(Grant No.51372193)Natural Science Basic Research Fund of Shaanxi Province(Grant No.2014JM6224)
文摘ZrO2 sizing nozzles with a basic Jormulation were prepared using 45% (by mass, the same hereinafter ) ( Mg, Y) - PSZ aggregate, 55% ( Mg, Y) - PSZ fines and 5% PVA binder. Al2O3 - ZrO2 composite powders ( 3%, 6%, 9% and 12% ) prepared by sol - gel method were added to replace the equal amount of ( Mg, Y) - PSZfines. Effects of Al2O3 - ZrO2 composite powders on physical properties, phase composition and microstructure of the ZrO2 sizing nozzles were studied. The results show that: the performances of the modified sizing nozzles with 3% Al2O3 - ZrO2 composite powder are better than those of the nobles without composite powder used in current production process, and the thermal shock resistance of the ,former nozzles is six times of that of the latter one.
文摘Al2O3-SiC-C specimens were prepared using white fused corundum (3-1,≤1 and ≤0.044 mm),Al2O3-SiC composite powders (d50 ≤ 5 μm),α-Al2O3 micropowder (d50 =1.2 μm),SiC powder (≤ 0.044 mm),flake graphite (≤ 0.088 mm),Si powder (d50 =42.8 μm) and B4C powder (d50 ≤10 μm) as main starting materials,and thermosetting phenolic resin as binder.4%,8%,12% and 16% (in mass,the same hereinafter) of Al2O3-SiC composite powders substituted the same quantity of α-Al2O3 micropowder + SiC powder.Effects of composite powder additions on apparent porosity,bulk density,cold modulus of rupture,cold crushing strength,hot modulus of rupture (1 400 ℃),thermal shock resistance (1 100 ℃,water quenching) and oxidation resistance (1 000 and 1 500 ℃) of Al2O3-SiC -C specimens after 180 ℃ curing,1 000 ℃ 3 h carbon-embedded firing and 1 500 ℃ 3 h carbon-embedded firing,respectively,were researched.The results indicate that:(1) with the increase of Al2O3-SiC composite powder,cold strengths of the cured specimens decline,those of the specimens fired at 1 000 ℃ change a little,and those of the specimens fired at 1 500 ℃ change a little except for an obvious improvement of cold crushing strength ; (2) with the increase of Al2O3-SiC composite powder,hot modulus of rupture at 1 400 ℃ decreases and thermal shock resistance enhances significantly; (3) when Al2O3-SiC composite powder addition is 4%,the oxidation resistance at 1 500 ℃ is the best,and the reason may be the composite powder is finer and more active,which is beneficial to form dense mullite protective layer to retard the O2 diffusion into the specimens.
文摘This work aims at solving the problems of difficult dispersion,easy oxidation and high cost of nano carbon during application,carbon/magnesium aluminate spinel(C/MgAl_(2)O_(4))composite powders were prepared using MgC2O4·2H2O,MgO2,Al2O3 powder,and Al powder as raw materials by combustion synthesis.The results indicate that with the maximum MgC2O4·2H2O addition of 33.34 mass%,the prepared powder contains 1.17 mass%of carbon and carbon distributes among spinel grains.The MgAl_(2)O_(4)spinel shows both granular and rod-like morphologies.The granular MgAl_(2)O_(4)spinel is generated from mutual diffusion between MgO and Al2O3;while the rod-like MgAl_(2)O_(4)spinel is mainly formed by the vapor-solid growth mechanism from Mg vapor and Al2O3.
基金supported by the National Research Foundation of Korea(NRF,Nos.NRF-2021R1A2C2014025,NRF-2022R1A5A1030054,and NRF-2022M3H4A1A02076759)grants funded by the Ministry of Science and ICT.
文摘The flexible product shape of additive manufacturing(AM)is attractive,but the process suffers from a lack of material property diversity due to a limited number of printable alloys and post-processing options.To overcome this problem,the AM of metal matrix composites(MMCs)is a highly suitable solution because the properties of MMC can be tailored using various reinforcements.Therefore,extensive research has been conducted on the AM of MMCs;however,the major huddle for this process has been the difficulties in preparing feedstock powder and operating the AM process.This study introduces an easily synthesizable core-shell composite powder,which was fabricated by a recently developed process called the SMART process.The core-shell powder has a novel morphology,consisting of a metal core and composite shell,distinguishing it from the powders used in conventional AM approaches.Inconel 625/TiCp composites were fabricated using the core-shell composite powder,with various fractions of TiCp up to 10 vol.%.Compared to additive-manufactured Inconel 625,the additive-manufactured MMCs showed enhanced strength with significantly fewer defects.The results of this study may accelerate the application of MMC fabricated by AM,which offers superior properties and reliability compared to casting and powder metallurgy due to the higher degree of dislocation density and reinforcement dispersion.
基金This work was supported by National Natural Science Foundation of China(Grant Nos.551905439,U1930207).
文摘The development of multiscale fiber-reinforced composite powders is an effective way to improve the mechanical properties and functionality of additively manufactured parts.Herein,a novel thermally induced precipitation process is proposed for preparing multiscale fiber-reinforced powders.A systematic evaluation was conducted to explore the main factors influencing powder morphology,powder flow,and microstructure.In the powder-forming mechanism,the polymer matrix is coated on the microfiber,and a film of carbon nanotubes covers the powder surface,which is promoted by heterogeneous nucleation.The composite powders comprised polyamide 12,carbon fiber(CF),and carbon nanotubes,which have been successfully applied in powder bed fusion processes including selective laser sintering(SLS).Smooth flow and powder deposition were observed,and the composite components obtained via SLS were well-fabricated using the optimized process parameters.A CF loading ratio of up to 66.7 wt%and homogeneous fiber distribution within the matrix were successfully achieved.