The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the...The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.展开更多
The effect of nanodiamond content in electrolyte and rotational speed of the stirrer on the deposition rate of coatings, the nanodiamond content in coatings, the micro- structure and the micro-hardness of coatings wer...The effect of nanodiamond content in electrolyte and rotational speed of the stirrer on the deposition rate of coatings, the nanodiamond content in coatings, the micro- structure and the micro-hardness of coatings were studicd. A self-made pin-on-disk tribo-meter was employed to evaluate the wear resistance of prepared coatings. Re- sults show that the thickness of composite coating decreases with the rotational speed, while the micro hardness of coating and the content of nanodiamond in coating increase with increasing its content in electrolyte. The wear resistance of the composite coating deposited in an electrolye with 6 g/L nanodiamond increases by 50% in contrast with the pure Ni-P coating.展开更多
The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study ...The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study the structure, constitution and performance of the electroless Ni-P-carbon nanotubes composite deposit. Experiential results show that, with the increment of carbon nanotubes content in electroless plating solution, the grain size on the sample surface decreases whereas the density of grains and the hardness for composite deposit increases. Moreover, adding carbon nanotubes not only improves the degree of crystallization for the composite deposit but also helps their transformation from the amorphous state to the nanocrystal state.展开更多
Technology and properties of electroless composite RE-Ni-B-SiC coatings have been investigated.Results show that stabilizer plys a decisive role in electroless composite Ni-B-SiC,the addition of appropriate quantity o...Technology and properties of electroless composite RE-Ni-B-SiC coatings have been investigated.Results show that stabilizer plys a decisive role in electroless composite Ni-B-SiC,the addition of appropriate quantity of RE(rare earth) into the Ni-B-SiC bath not only increases SiC content in composite coatings,their hardness and wear resistance but also improves crystalline fineness,Wear resistance increases with the increase of SiC.Hardness and wear resistance of composite coatings reach peak values a fter heat treatment at 4OO and 500℃ for 1h respectively.展开更多
A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion...A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion behavior of the NiP/TiO2 composite film was investigated by polarization resistance measurement, anode polarization, ESEM (environmental scanning electron microscopy) and EIS (electrochemical impedance spectroscopy) measurements. Results showed that the NiP/ TiO2 composite film has a good corrosion resistance in 0.5mol/L H2SO4 solution. The element valence of the composite film was characterized by XPS (X-ray photoelectron spectroscopy) spectrum, and an anticorrosion mechanism of the composite film was discussed.展开更多
Hydrogen is a promising fuel for it is clean,highly abundant and non-toxic,but on-board storage of hydrogen is still a challenge.So it is imperative to have an efficient method of hydrogen storage.The mesoporous MCM-4...Hydrogen is a promising fuel for it is clean,highly abundant and non-toxic,but on-board storage of hydrogen is still a challenge.So it is imperative to have an efficient method of hydrogen storage.The mesoporous MCM-48 especially the nickel-containing MCM-48 has great potential in hydrogen storage.MCM-48 was prepared by hydrothermal synthesis.Then electroless plating technology was used to deposit Ni on the surface of MCM-48 under ultrasonic environment.Powder X-ray diffraction(XRD),transmission electron microscopy(TEM),and N2 adsorption-desorption were employed to investigate the pore structure properties.The results showed that all the samples had Ia3 d cubic structure and pore channels were highly ordered.Hydrogen adsorption studies showed that the MCM-48 after nickel plating adsorbed nearly twice the amount of hydrogen than pure MCM-48 at 2.0 MPa,263 K.So we believe that a small amount of Ni can improve the capacity of hydrogen adsorption of MCM-48 efficiently.展开更多
基金Project (51204105) supported by the National Natural Science Foundation of ChinaProject (11ZR1418000) supported by the Shanghai Natural Science Foundation, China
文摘The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.
基金supported by the Jiangsu Key Laboratory for Materials Tribology (No.kjsmcx0901)
文摘The effect of nanodiamond content in electrolyte and rotational speed of the stirrer on the deposition rate of coatings, the nanodiamond content in coatings, the micro- structure and the micro-hardness of coatings were studicd. A self-made pin-on-disk tribo-meter was employed to evaluate the wear resistance of prepared coatings. Re- sults show that the thickness of composite coating decreases with the rotational speed, while the micro hardness of coating and the content of nanodiamond in coating increase with increasing its content in electrolyte. The wear resistance of the composite coating deposited in an electrolye with 6 g/L nanodiamond increases by 50% in contrast with the pure Ni-P coating.
文摘The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study the structure, constitution and performance of the electroless Ni-P-carbon nanotubes composite deposit. Experiential results show that, with the increment of carbon nanotubes content in electroless plating solution, the grain size on the sample surface decreases whereas the density of grains and the hardness for composite deposit increases. Moreover, adding carbon nanotubes not only improves the degree of crystallization for the composite deposit but also helps their transformation from the amorphous state to the nanocrystal state.
文摘Technology and properties of electroless composite RE-Ni-B-SiC coatings have been investigated.Results show that stabilizer plys a decisive role in electroless composite Ni-B-SiC,the addition of appropriate quantity of RE(rare earth) into the Ni-B-SiC bath not only increases SiC content in composite coatings,their hardness and wear resistance but also improves crystalline fineness,Wear resistance increases with the increase of SiC.Hardness and wear resistance of composite coatings reach peak values a fter heat treatment at 4OO and 500℃ for 1h respectively.
文摘A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion behavior of the NiP/TiO2 composite film was investigated by polarization resistance measurement, anode polarization, ESEM (environmental scanning electron microscopy) and EIS (electrochemical impedance spectroscopy) measurements. Results showed that the NiP/ TiO2 composite film has a good corrosion resistance in 0.5mol/L H2SO4 solution. The element valence of the composite film was characterized by XPS (X-ray photoelectron spectroscopy) spectrum, and an anticorrosion mechanism of the composite film was discussed.
文摘Hydrogen is a promising fuel for it is clean,highly abundant and non-toxic,but on-board storage of hydrogen is still a challenge.So it is imperative to have an efficient method of hydrogen storage.The mesoporous MCM-48 especially the nickel-containing MCM-48 has great potential in hydrogen storage.MCM-48 was prepared by hydrothermal synthesis.Then electroless plating technology was used to deposit Ni on the surface of MCM-48 under ultrasonic environment.Powder X-ray diffraction(XRD),transmission electron microscopy(TEM),and N2 adsorption-desorption were employed to investigate the pore structure properties.The results showed that all the samples had Ia3 d cubic structure and pore channels were highly ordered.Hydrogen adsorption studies showed that the MCM-48 after nickel plating adsorbed nearly twice the amount of hydrogen than pure MCM-48 at 2.0 MPa,263 K.So we believe that a small amount of Ni can improve the capacity of hydrogen adsorption of MCM-48 efficiently.