期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model 被引量:4
1
作者 Jun Yan Zunyi Duan +1 位作者 Erik Lund Guozhong Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期430-441,共12页
This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the ... This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries. 展开更多
关键词 composite frame structure multi-scale optimization topology optimization fiber winding angle structural compliance
下载PDF
Integrated design optimization of composite frames and materials for maximum fundamental frequency with continuous fiber winding angles 被引量:2
2
作者 Zunyi Duan Jun Yan +2 位作者 Ikjin Lee Jingyuan Wang Tao Yu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第6期1084-1094,共11页
Fiber reinforced composite frame structure is an ideal lightweight and large-span structure in the fields of aerospace,satellite and wind turbine.Natural fundamental frequency is one of key indicators in the design re... Fiber reinforced composite frame structure is an ideal lightweight and large-span structure in the fields of aerospace,satellite and wind turbine.Natural fundamental frequency is one of key indicators in the design requirement of the composite frame since structural resonance can be effectively avoided with the increase of the fundamental frequency.Inspired by the concept of integrated design optmization of composite frame structures and materials,the design optimization for the maximum structural fundamental frequency of fiber reinforced frame structures is proposed.An optimization model oriented at the maximum structural fundamental frequency under a composite material volume constraint is established.Two kinds of independent design variables are optimized,in which one is variables represented structural topology,the other is variables of continuous fiber winding angles.Sensitivity analysis of the frequency with respect to the two kinds of independent design variables is implemented with the semi-analytical sensitivity method.Some representative examples in the manuscript demonstrate that the integrated design optimization of composite structures can effectively explore coupled effects between structural configurations and material properties to increase the structural fundamental frequency.The proposed integrated optimization model has great potential to improve composite frames structural dynamic performance in aerospace industries. 展开更多
关键词 Integrated optimization MAXIMUM FUNDAMENTAL frequency composite frame structures Continuous fiber winding angle SEMI-ANALYTICAL sensitivity analysis
下载PDF
复合材料框架结构刚度几何双尺度优化设计 被引量:3
3
作者 段尊义 阎军 +1 位作者 张瑞 赵国忠 《计算力学学报》 CAS CSCD 北大核心 2016年第1期1-8,72,共9页
航空航天结构对超轻质大跨度框架类结构提出了迫切的需求,考虑纤维增强复合材料框架结构宏观与微观的可设计性,基于结构与材料一体化优化理念,研究了复合材料框架结构宏观拓扑与微观纤维铺层参数并发优化的双尺度优化问题。以宏观管件... 航空航天结构对超轻质大跨度框架类结构提出了迫切的需求,考虑纤维增强复合材料框架结构宏观与微观的可设计性,基于结构与材料一体化优化理念,研究了复合材料框架结构宏观拓扑与微观纤维铺层参数并发优化的双尺度优化问题。以宏观管件构件内半径与微观连续纤维缠绕角度为两类独立的设计变量,建立了以最小化结构柔顺性为目标函数、材料用量为约束的双尺度复合材料框架结构优化列式,给出了宏微观设计变量灵敏度信息的求解算法。讨论并对比了单尺度微观纤维缠绕角度优化、宏观截面拓扑优化与宏微观双尺度并发优化。数值算例表明,双尺度并发优化设计可进一步发掘结构与材料的承载潜力,实现既定性能下的结构轻量化设计。 展开更多
关键词 复合材料框架结构 双尺度优化 纤维缠绕角 铺层参数 半解析灵敏度分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部