As an essential function of encrypted Internet traffic analysis,encrypted traffic service classification can support both coarse-grained network service traffic management and security supervision.However,the traditio...As an essential function of encrypted Internet traffic analysis,encrypted traffic service classification can support both coarse-grained network service traffic management and security supervision.However,the traditional plaintext-based Deep Packet Inspection(DPI)method cannot be applied to such a classification.Moreover,machine learning-based existing methods encounter two problems during feature selection:complex feature overcost processing and Transport Layer Security(TLS)version discrepancy.In this paper,we consider differences between encryption network protocol stacks and propose a composite deep learning-based method in multiprotocol environments using a sliding multiple Protocol Data Unit(multiPDU)length sequence as features by fully utilizing the Markov property in a multiPDU length sequence and maintaining suitability with a TLS-1.3 environment.Control experiments show that both Length-Sensitive(LS)composite deep learning model using a capsule neural network and LS-long short time memory achieve satisfactory effectiveness in F1-score and performance.Owing to faster feature extraction,our method is suitable for actual network environments and superior to state-of-the-art methods.展开更多
This paper introduces a fault-tolerant control(FTC)design for a faulty fixed-wing unmanned aerial vehicle(UAV).To constrain tracking errors against actuator faults,error constraint inequalities are first transformed t...This paper introduces a fault-tolerant control(FTC)design for a faulty fixed-wing unmanned aerial vehicle(UAV).To constrain tracking errors against actuator faults,error constraint inequalities are first transformed to a new set of variables based on prescribed performance functions.Then,the commonly used and powerful proportional-integral-derivative(PID)control concept is employed to filter the transformed error variables.To handle the fault-induced nonlinear terms,a composite learning algorithm consisting of neural network and disturbance observer is incorporated for increasing flight safety.It is shown by Lyapunov stability analysis that the tracking errors are strictly constrained within the specified error bounds.Experimental results are presented to verify the feasibility of the developed FTC scheme.展开更多
基金supported by the General Program of the National Natural Science Foundation of China under Grant No.62172093the National Key R&D Program of China under Grant No.2018YFB1800602+1 种基金2019 Industrial Internet Innovation and Development Project,Ministry of Industry and Information Technology(MIIT)under Grant No.6709010003Ministry of Education-China Mobile Research Fund under Grant No.MCM20180506。
文摘As an essential function of encrypted Internet traffic analysis,encrypted traffic service classification can support both coarse-grained network service traffic management and security supervision.However,the traditional plaintext-based Deep Packet Inspection(DPI)method cannot be applied to such a classification.Moreover,machine learning-based existing methods encounter two problems during feature selection:complex feature overcost processing and Transport Layer Security(TLS)version discrepancy.In this paper,we consider differences between encryption network protocol stacks and propose a composite deep learning-based method in multiprotocol environments using a sliding multiple Protocol Data Unit(multiPDU)length sequence as features by fully utilizing the Markov property in a multiPDU length sequence and maintaining suitability with a TLS-1.3 environment.Control experiments show that both Length-Sensitive(LS)composite deep learning model using a capsule neural network and LS-long short time memory achieve satisfactory effectiveness in F1-score and performance.Owing to faster feature extraction,our method is suitable for actual network environments and superior to state-of-the-art methods.
基金This work was supported by the National Natural Science Foundation of China(62003162,61833013,62020106003)the Natural Science Foundation of Jiangsu Province of China(BK20200416)+3 种基金the China Postdoctoral Science Foundation(2020TQ0151,2020M681590)the State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University(2019-KF-23-05)the 111 Project(B20007)the Natural Sciences and Engineering Research Council of Canada.
文摘This paper introduces a fault-tolerant control(FTC)design for a faulty fixed-wing unmanned aerial vehicle(UAV).To constrain tracking errors against actuator faults,error constraint inequalities are first transformed to a new set of variables based on prescribed performance functions.Then,the commonly used and powerful proportional-integral-derivative(PID)control concept is employed to filter the transformed error variables.To handle the fault-induced nonlinear terms,a composite learning algorithm consisting of neural network and disturbance observer is incorporated for increasing flight safety.It is shown by Lyapunov stability analysis that the tracking errors are strictly constrained within the specified error bounds.Experimental results are presented to verify the feasibility of the developed FTC scheme.