Several action regimes were employed, namely, those exposed to solutions containing single and/or composite chloride and sulfate salts, and under wet-dry cycles and/or flexural loading. The variations in dynamic modul...Several action regimes were employed, namely, those exposed to solutions containing single and/or composite chloride and sulfate salts, and under wet-dry cycles and/or flexural loading. The variations in dynamic modulus of elasticity(Erd values) were monitored, as well as the key factor impacting on the chloride ingress when concrete subjected to multiple action regimes was identified by the method of Grey Relation Analysis(GRA). The changes in micro-structures and mineral products of interior concrete after different action regimes were investigated by means of X-ray diffraction(XRD), mercury intrusion technique(MIP), and scanning electron microscopy(SEM). The test results showed that the cyclic wet-dry accelerated the deterioration of OPC concrete more than the action of 35% flexural loading based on the results of Erd values and the GEA. The analyses from micro-structures could give certain explanations to the change in Erd values under different action regimes.展开更多
In this paper, Dynamic Relaxation Method is applied to study the postbuckling path of cylindrically curved panels of laminated composite materials during loading and unloading. The phenomenon that loading paths do not...In this paper, Dynamic Relaxation Method is applied to study the postbuckling path of cylindrically curved panels of laminated composite materials during loading and unloading. The phenomenon that loading paths do not coincide with unloading paths has been found. Numerical results are given for cylindrically curved cross-ply panels subjected to uniform uniaxial compression under two types of boundary conditions. The influence of the number of layers, the panels curvature and the initial imperfection on the postbuckling paths is discussed.展开更多
A new optimization method for the optimization of stacking of composite glass fiber laminates is developed. The fiber orientation and angle of the layers of the cylindrical shells are sought considering the buckling l...A new optimization method for the optimization of stacking of composite glass fiber laminates is developed. The fiber orientation and angle of the layers of the cylindrical shells are sought considering the buckling load. The proposed optimization algorithm applies both finite element analysis and the mode-pursuing sampling (MPS)method. The algorithms suggest the optimal stacking sequence for achieving the maximal buckling load. The procedure is implemented by integrating ANSYS and MATLAB. The stacking sequence designing for the symmetric angle-ply three-layered and five-layered composite cylinder shells is presented to illustrate the optimization process, respectively. Compared with the genetic algorithms, the proposed optimization method is much faster and efficient for composite staking sequence plan.展开更多
The shear deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated compo...The shear deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated composite box beams is presented by taking into account all the structural couplings coming from the material anisotropy and the shear deformation effects. The current composite beam includes the transverse shear and the restrained warping induced shear deformation by using the first-order shear deformation beam theory. Seven governing equations are derived for the coupled axial-flexural-torsional-shearing buckling based on the principle of minimum total potential energy. Based on the present analytical model, three different types of finite composite beam elements, namely, linear, quadratic and cubic elements are developed to analyze the flexural, torsional, and buckling problems. In order to demonstrate the accuracy and superiority of the beam theory and the finite beam elements developed by this study,numerical solutions are presented and compared with the results obtained by other researchers and the detailed threedimensional analysis results using the shell elements of ABAQUS. Especially, the influences of the modulus ratio and the simplified assumptions in stress-strain relations on the deflection, twisting angle, and critical buckling loads of composite box beams are investigated.展开更多
Articular cartilage is a layer of low-friction,load-bearing soft hydrated tissue covering bone-ends in diarthrosis,which plays an important role in spreading the load,reducing the joint contact stress,joint friction a...Articular cartilage is a layer of low-friction,load-bearing soft hydrated tissue covering bone-ends in diarthrosis,which plays an important role in spreading the load,reducing the joint contact stress,joint friction and wear during exercise.The vital mechanical function展开更多
At present,the large-scale access to electric vehicles(EVs)is exerting considerable pressure on the distribution network.Hence,it is particularly important to analyze the capacity of the distribution network to accomm...At present,the large-scale access to electric vehicles(EVs)is exerting considerable pressure on the distribution network.Hence,it is particularly important to analyze the capacity of the distribution network to accommodate EVs.To this end,we propose a method for analyzing the EV capacity of the distribution network by considering the composition of the conventional load.First,the analysis and pretreatment methods for the distribution network architecture and conventional load are proposed.Second,the charging behavior of an EVis simulated by combining the Monte Carlo method and the trip chain theory.After obtaining the temporal and spatial distribution of the EV charging load,themethod of distribution according to the proportion of the same type of conventional load among the nodes is adopted to integrate the EV charging load with the conventional load of the distribution network.By adjusting the EV ownership,the EV capacity in the distribution network is analyzed and solved on the basis of the following indices:node voltage,branch current,and transformer capacity.Finally,by considering the 10-kV distribution network in some areas of an actual city as an example,we show that the proposed analysis method can obtain a more reasonable number of EVs to be accommodated in the distribution network.展开更多
Time?varying mesh stiffness(TVMS) and gear errors include short?term and long?term components are the two main internal dynamic excitations for gear transmission. The coupling relationship between the two factors is u...Time?varying mesh stiffness(TVMS) and gear errors include short?term and long?term components are the two main internal dynamic excitations for gear transmission. The coupling relationship between the two factors is usually neglected in the traditional quasi-static and dynamic behaviors analysis of gear system. This paper investigates the influence of short?term and long?term components of manufacturing errors on quasi?static and dynamic behaviors of helical gear system considering the coupling relationship between TVMS and gear errors. The TVMS, loaded static transmission error(LSTE) and loaded composite mesh error(LCMS) are determined using an improved loaded tooth contact analysis(LTCA) model. Considering the structure of shaft, as well as the direction of power flow and bearing location, a precise generalized finite element dynamic model of helical gear system is developed, and the dynamic responses of the system are obtained by numerical integration method. The results suggest that lighter loading conditions result in smaller mesh stiffness and stronger vibration, and the corresponding resonance speeds of the system become lower. Long?term components of manufacturing errors lead to the appearance of sideband frequency components in frequency spectrum of dynamic responses. The sideband frequency components are predominant under light loading conditions. With the increase of output torque, the mesh frequency and its harmonics components tend to be enhanced relative to sideband frequency components. This study can provide effective reference for low noise design of gear transmission.展开更多
Based on the analyses of the structural feature and the function requirements of newstyle bottle cap, the two fundamental components, the lining washer and the outer body, are abstracted as a plate and a cylinder with...Based on the analyses of the structural feature and the function requirements of newstyle bottle cap, the two fundamental components, the lining washer and the outer body, are abstracted as a plate and a cylinder with thin wall respectively. For simulating the deformation of the lining washer under equiaxial pressure, the modified Lagrangian finite element analysis is applied on the 228 triangular elements. Under assembly pressure, the plastoelastic deformation of both the lining washer and the outer body are studied in terms of Tresca's yield criterion and the limitation of the plastic deformation is presented when the two components are assembled into one unit. For the production of this kind of bottle cover, experiments are carried out by carefully measuring the changes of the diameter of lining washer as well as that of the outer body. It is shown that results from the experiments have a good agreement with the theoretical calculation and the maximum value of the allowable pressure has successfully been used in the design of newly developed bottle cap production system.展开更多
In the composite load model(CLM),which is commonly used in China,an equivalent motor and equivalent static load are used to represent all electrical equipment and networks connected to a load bus.Existing research has...In the composite load model(CLM),which is commonly used in China,an equivalent motor and equivalent static load are used to represent all electrical equipment and networks connected to a load bus.Existing research has determined typical values of electrical and mechanical parameters for load models of different load types,which improves the basis for load modeling.However,the motor proportion parameter is not the same for different load buses or at different times;therefore,obtaining the actual motor proportion is key to establishing an accurate load model.In the existing load modeling method,motor proportion is commonly identified along with other parameters under rare large disturbances;therefore,the value of the motor proportion is fixed by the time when a large disturbance occurs.In this paper,formulae are derived to estimate motor proportion under small disturbances,and these formulae allow direct calculation of motor proportion without using any optimization algorithm.The proposed estimation formulae do not rely on any parameters of load model or power system but instead rely only on measurement of the voltage and active power at steady-state points before and after a small disturbance.Because of universality of small disturbances in power systems,estimating time-varying motor proportion under small disturbances will be helpful for solving the time-varying problem of load models.Finally,the proposed motor proportion estimation formulae are validated by simulations,physical experiments,and field experiments.展开更多
Composite load model of Western Electricity Coordinating Council(WECC)is a newly developed load model that has drawn great interest from the industry.To analyze its dynamic characteristics with both mathematical and e...Composite load model of Western Electricity Coordinating Council(WECC)is a newly developed load model that has drawn great interest from the industry.To analyze its dynamic characteristics with both mathematical and engineering rigors,a detailed mathematical model is needed.Although composite load model of WECC is available in commercial software as a module and its detailed block diagrams can be found in several public reports,there is no complete mathematical representation of the full model in literature.This paper addresses a challenging problem of deriving detailed mathematical representation of composite load model of WECC from its block diagrams.In particular,we have derived the mathematical representation of the new DERA model.The developed mathematical model is verified using both MATLAB and PSS/E to show its effectiveness in representing composite load model of WECC.The derived mathematical representation serves as an important foundation for parameter identification,order reduction and other dynamic analysis.展开更多
The panel-type structures used in aerospace engineering can be subjected to severe highfrequency acoustic loadings in service. This paper evaluates the frequency-dependent random fatigue of panel-type structures made ...The panel-type structures used in aerospace engineering can be subjected to severe highfrequency acoustic loadings in service. This paper evaluates the frequency-dependent random fatigue of panel-type structures made of ceramic matrix composites(CMCs) under acoustic loadings. Firstly, the high-frequency random responses from the broadband random excitation will result in more stress cycles in a deinite period of time. The probability density distributions of stress amplitudes will be different in different frequency bandwidths, though the peak stress estimations are identical. Secondly, the fatigue properties of CMCs can be highly frequency-dependent. The fatigue evaluation method for the random vibration case is adopted to evaluate the fatigue damage of a representative stiffened panel structure. The frequency effect through S-N curves on random fatigue damage is numerically veriied. Finally, a parameter is demonstrated to characterize the mean vibration frequency of a random process, and hence this parameter can further be considered as a reasonable loading frequency in the fatigue tests of CMCs to obtain more reliable S-N curves.Therefore, the inluence of vibration frequency can be incorporated in the random fatigue model from the two perspectives.展开更多
Road dust is one of the most common pollutants and causes a series of negative effects on plant physiology. Dust's impacts on plants can be regarded as a combination of load,composition and grain size impacts on plan...Road dust is one of the most common pollutants and causes a series of negative effects on plant physiology. Dust's impacts on plants can be regarded as a combination of load,composition and grain size impacts on plants; however, there is a lack of integrated dust effect studies involving these three aspects. In our study, Sophora japonica seedlings were artificially dusted with road dust collected from the road surface of Beijing so that we could study the impacts of this dust on nitrogen/carbon allocation, biomass allocation and photosynthetic pigments from the three aspects of composition, load and grain size. The results showed that the growth characteristics of S. japonica seedlings were mostly influenced by dust composition and load. Leaf N, root–shoot ratio and chlorophyll a/b were significantly affected by dust composition and load; leaf C/N, shoot biomass, total chlorophyll and carotenoid were significantly affected by dust load; stem N and stem C/N were significantly affected by dust composition; while the dust grain size alone did not affect any of the growth characteristics. Road dust did influence the growth characteristics more extensively than loam. Therefore, a higher dust load could increase the differences between road dust and loam treatments. The elements in dust are well correlated to the shoot N, shoot C/N, and root–shoot ratio of S. japonica seedlings. This knowledge could benefit the management of urban green spaces.展开更多
This paper proposes to resolve optimal solar photovoltaic(SPV)system locations and sizes in electrical distribution networks using a novel Archimedes optimization algorithm(AOA)inspired by physical principles in order...This paper proposes to resolve optimal solar photovoltaic(SPV)system locations and sizes in electrical distribution networks using a novel Archimedes optimization algorithm(AOA)inspired by physical principles in order to minimize network dependence and greenhouse gas(GHG)emissions to the greatest extent possible.Loss sensitivity factors are used to predefine the search space for sites,and AOA is used to identify the optimal locations and sizes of SPV systems for reducing grid dependence and GHG emissions from conventional power plants.Experiments with composite agriculture loads on a practical Indian 22-bus agricultural feeder,a 28-bus rural feeder and an IEEE 85-bus feeder demonstrated the critical nature of optimally distributed SPV systems for minimizing grid reliance and reducing GHG emissions from conventional energy sources.Additionally,the voltage profile of the network has been enhanced,resulting in significant reductions in distribution losses.The results of AOA were compared to those of several other nature-inspired heuristic algorithms previously published in the literature,and it was observed that AOA outperformed them in terms of convergence and redundancy when solving complex,non-linear and multivariable optimization problems.展开更多
基金Funded by the National Natural Science Foundation of China(51578141)the Major State Basic Research Development Program of China(973 Program)(2015CB655102)+1 种基金the Program Most of China(2016YFE0118200)the support of China Scholarship Council
文摘Several action regimes were employed, namely, those exposed to solutions containing single and/or composite chloride and sulfate salts, and under wet-dry cycles and/or flexural loading. The variations in dynamic modulus of elasticity(Erd values) were monitored, as well as the key factor impacting on the chloride ingress when concrete subjected to multiple action regimes was identified by the method of Grey Relation Analysis(GRA). The changes in micro-structures and mineral products of interior concrete after different action regimes were investigated by means of X-ray diffraction(XRD), mercury intrusion technique(MIP), and scanning electron microscopy(SEM). The test results showed that the cyclic wet-dry accelerated the deterioration of OPC concrete more than the action of 35% flexural loading based on the results of Erd values and the GEA. The analyses from micro-structures could give certain explanations to the change in Erd values under different action regimes.
文摘In this paper, Dynamic Relaxation Method is applied to study the postbuckling path of cylindrically curved panels of laminated composite materials during loading and unloading. The phenomenon that loading paths do not coincide with unloading paths has been found. Numerical results are given for cylindrically curved cross-ply panels subjected to uniform uniaxial compression under two types of boundary conditions. The influence of the number of layers, the panels curvature and the initial imperfection on the postbuckling paths is discussed.
基金Innovation Team Development Program of Ministry of Education of China (No. IRT0763)National Natural Science Foundation of China (No. 50205028).
文摘A new optimization method for the optimization of stacking of composite glass fiber laminates is developed. The fiber orientation and angle of the layers of the cylindrical shells are sought considering the buckling load. The proposed optimization algorithm applies both finite element analysis and the mode-pursuing sampling (MPS)method. The algorithms suggest the optimal stacking sequence for achieving the maximal buckling load. The procedure is implemented by integrating ANSYS and MATLAB. The stacking sequence designing for the symmetric angle-ply three-layered and five-layered composite cylinder shells is presented to illustrate the optimization process, respectively. Compared with the genetic algorithms, the proposed optimization method is much faster and efficient for composite staking sequence plan.
基金part of a research project supported by Korea Ministry of LandTransportation Maritime Affairs (MLTM) through Core Research Project 1 of Super Long Span Bridge R&D Centersupported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology (2012R1A1A2007054)
文摘The shear deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated composite box beams is presented by taking into account all the structural couplings coming from the material anisotropy and the shear deformation effects. The current composite beam includes the transverse shear and the restrained warping induced shear deformation by using the first-order shear deformation beam theory. Seven governing equations are derived for the coupled axial-flexural-torsional-shearing buckling based on the principle of minimum total potential energy. Based on the present analytical model, three different types of finite composite beam elements, namely, linear, quadratic and cubic elements are developed to analyze the flexural, torsional, and buckling problems. In order to demonstrate the accuracy and superiority of the beam theory and the finite beam elements developed by this study,numerical solutions are presented and compared with the results obtained by other researchers and the detailed threedimensional analysis results using the shell elements of ABAQUS. Especially, the influences of the modulus ratio and the simplified assumptions in stress-strain relations on the deflection, twisting angle, and critical buckling loads of composite box beams are investigated.
基金National Natural Science Foundation of China,10872147Natural Science Foundation of Tianjin,09JCYBJC1400
文摘Articular cartilage is a layer of low-friction,load-bearing soft hydrated tissue covering bone-ends in diarthrosis,which plays an important role in spreading the load,reducing the joint contact stress,joint friction and wear during exercise.The vital mechanical function
基金supported by the Science and Technology Project of Zhangjiakou Power Supply Company of State Grid Jibei Co.,Ltd.(SGJBZJ00YJJS2001096).
文摘At present,the large-scale access to electric vehicles(EVs)is exerting considerable pressure on the distribution network.Hence,it is particularly important to analyze the capacity of the distribution network to accommodate EVs.To this end,we propose a method for analyzing the EV capacity of the distribution network by considering the composition of the conventional load.First,the analysis and pretreatment methods for the distribution network architecture and conventional load are proposed.Second,the charging behavior of an EVis simulated by combining the Monte Carlo method and the trip chain theory.After obtaining the temporal and spatial distribution of the EV charging load,themethod of distribution according to the proportion of the same type of conventional load among the nodes is adopted to integrate the EV charging load with the conventional load of the distribution network.By adjusting the EV ownership,the EV capacity in the distribution network is analyzed and solved on the basis of the following indices:node voltage,branch current,and transformer capacity.Finally,by considering the 10-kV distribution network in some areas of an actual city as an example,we show that the proposed analysis method can obtain a more reasonable number of EVs to be accommodated in the distribution network.
基金Supported by Key Project of National Natural Science Foundation of China(Grant No.51535009)111 Project(Grant No.B13044)
文摘Time?varying mesh stiffness(TVMS) and gear errors include short?term and long?term components are the two main internal dynamic excitations for gear transmission. The coupling relationship between the two factors is usually neglected in the traditional quasi-static and dynamic behaviors analysis of gear system. This paper investigates the influence of short?term and long?term components of manufacturing errors on quasi?static and dynamic behaviors of helical gear system considering the coupling relationship between TVMS and gear errors. The TVMS, loaded static transmission error(LSTE) and loaded composite mesh error(LCMS) are determined using an improved loaded tooth contact analysis(LTCA) model. Considering the structure of shaft, as well as the direction of power flow and bearing location, a precise generalized finite element dynamic model of helical gear system is developed, and the dynamic responses of the system are obtained by numerical integration method. The results suggest that lighter loading conditions result in smaller mesh stiffness and stronger vibration, and the corresponding resonance speeds of the system become lower. Long?term components of manufacturing errors lead to the appearance of sideband frequency components in frequency spectrum of dynamic responses. The sideband frequency components are predominant under light loading conditions. With the increase of output torque, the mesh frequency and its harmonics components tend to be enhanced relative to sideband frequency components. This study can provide effective reference for low noise design of gear transmission.
基金This project is supported by Provincial Natural Science Fundation of Hei-longjiang, China (No.E0311) and Provincial Key Project of Heilingjiang,China (No.G99A13-1).
文摘Based on the analyses of the structural feature and the function requirements of newstyle bottle cap, the two fundamental components, the lining washer and the outer body, are abstracted as a plate and a cylinder with thin wall respectively. For simulating the deformation of the lining washer under equiaxial pressure, the modified Lagrangian finite element analysis is applied on the 228 triangular elements. Under assembly pressure, the plastoelastic deformation of both the lining washer and the outer body are studied in terms of Tresca's yield criterion and the limitation of the plastic deformation is presented when the two components are assembled into one unit. For the production of this kind of bottle cover, experiments are carried out by carefully measuring the changes of the diameter of lining washer as well as that of the outer body. It is shown that results from the experiments have a good agreement with the theoretical calculation and the maximum value of the allowable pressure has successfully been used in the design of newly developed bottle cap production system.
基金supported by the National Natural Science Foundation of China(51837004,U2066601)the Science and Technology Foundation of SGCC(SGJS0000DKJS1900497)the 111 Project of Renewable Energy and Smart Grid(B14022).
文摘In the composite load model(CLM),which is commonly used in China,an equivalent motor and equivalent static load are used to represent all electrical equipment and networks connected to a load bus.Existing research has determined typical values of electrical and mechanical parameters for load models of different load types,which improves the basis for load modeling.However,the motor proportion parameter is not the same for different load buses or at different times;therefore,obtaining the actual motor proportion is key to establishing an accurate load model.In the existing load modeling method,motor proportion is commonly identified along with other parameters under rare large disturbances;therefore,the value of the motor proportion is fixed by the time when a large disturbance occurs.In this paper,formulae are derived to estimate motor proportion under small disturbances,and these formulae allow direct calculation of motor proportion without using any optimization algorithm.The proposed estimation formulae do not rely on any parameters of load model or power system but instead rely only on measurement of the voltage and active power at steady-state points before and after a small disturbance.Because of universality of small disturbances in power systems,estimating time-varying motor proportion under small disturbances will be helpful for solving the time-varying problem of load models.Finally,the proposed motor proportion estimation formulae are validated by simulations,physical experiments,and field experiments.
基金supported by the Power Systems Engineering Research Center(No.S-84G)
文摘Composite load model of Western Electricity Coordinating Council(WECC)is a newly developed load model that has drawn great interest from the industry.To analyze its dynamic characteristics with both mathematical and engineering rigors,a detailed mathematical model is needed.Although composite load model of WECC is available in commercial software as a module and its detailed block diagrams can be found in several public reports,there is no complete mathematical representation of the full model in literature.This paper addresses a challenging problem of deriving detailed mathematical representation of composite load model of WECC from its block diagrams.In particular,we have derived the mathematical representation of the new DERA model.The developed mathematical model is verified using both MATLAB and PSS/E to show its effectiveness in representing composite load model of WECC.The derived mathematical representation serves as an important foundation for parameter identification,order reduction and other dynamic analysis.
基金supports from the National Natural Science Foundation of China (No. 11572086 , No. 11402052 )the New Century Excellent Talent in University (NCET-11-0086)+3 种基金the Natural Science Foundation of Jiangsu province (No. BK20140616 )the Fundamental Research Funds for the Central Universities and the Scientiic Research Innovation Program of Jiangsu Province College Postgraduates (KYLX_0093, KYLX15_0092)the China Scholarship Council ( 201506090047 )the Ministry of Education, Science and Technological Development of Republic of Serbia ( TR 35011 and ON 74001 )
文摘The panel-type structures used in aerospace engineering can be subjected to severe highfrequency acoustic loadings in service. This paper evaluates the frequency-dependent random fatigue of panel-type structures made of ceramic matrix composites(CMCs) under acoustic loadings. Firstly, the high-frequency random responses from the broadband random excitation will result in more stress cycles in a deinite period of time. The probability density distributions of stress amplitudes will be different in different frequency bandwidths, though the peak stress estimations are identical. Secondly, the fatigue properties of CMCs can be highly frequency-dependent. The fatigue evaluation method for the random vibration case is adopted to evaluate the fatigue damage of a representative stiffened panel structure. The frequency effect through S-N curves on random fatigue damage is numerically veriied. Finally, a parameter is demonstrated to characterize the mean vibration frequency of a random process, and hence this parameter can further be considered as a reasonable loading frequency in the fatigue tests of CMCs to obtain more reliable S-N curves.Therefore, the inluence of vibration frequency can be incorporated in the random fatigue model from the two perspectives.
基金supported by the National Natural Science Foundation of China(Project 41430638 to KMM)
文摘Road dust is one of the most common pollutants and causes a series of negative effects on plant physiology. Dust's impacts on plants can be regarded as a combination of load,composition and grain size impacts on plants; however, there is a lack of integrated dust effect studies involving these three aspects. In our study, Sophora japonica seedlings were artificially dusted with road dust collected from the road surface of Beijing so that we could study the impacts of this dust on nitrogen/carbon allocation, biomass allocation and photosynthetic pigments from the three aspects of composition, load and grain size. The results showed that the growth characteristics of S. japonica seedlings were mostly influenced by dust composition and load. Leaf N, root–shoot ratio and chlorophyll a/b were significantly affected by dust composition and load; leaf C/N, shoot biomass, total chlorophyll and carotenoid were significantly affected by dust load; stem N and stem C/N were significantly affected by dust composition; while the dust grain size alone did not affect any of the growth characteristics. Road dust did influence the growth characteristics more extensively than loam. Therefore, a higher dust load could increase the differences between road dust and loam treatments. The elements in dust are well correlated to the shoot N, shoot C/N, and root–shoot ratio of S. japonica seedlings. This knowledge could benefit the management of urban green spaces.
文摘This paper proposes to resolve optimal solar photovoltaic(SPV)system locations and sizes in electrical distribution networks using a novel Archimedes optimization algorithm(AOA)inspired by physical principles in order to minimize network dependence and greenhouse gas(GHG)emissions to the greatest extent possible.Loss sensitivity factors are used to predefine the search space for sites,and AOA is used to identify the optimal locations and sizes of SPV systems for reducing grid dependence and GHG emissions from conventional power plants.Experiments with composite agriculture loads on a practical Indian 22-bus agricultural feeder,a 28-bus rural feeder and an IEEE 85-bus feeder demonstrated the critical nature of optimally distributed SPV systems for minimizing grid reliance and reducing GHG emissions from conventional energy sources.Additionally,the voltage profile of the network has been enhanced,resulting in significant reductions in distribution losses.The results of AOA were compared to those of several other nature-inspired heuristic algorithms previously published in the literature,and it was observed that AOA outperformed them in terms of convergence and redundancy when solving complex,non-linear and multivariable optimization problems.