期刊文献+
共找到1,369篇文章
< 1 2 69 >
每页显示 20 50 100
Deformation Characteristics and Mechanical Properties of Ti/Al Bimetallic Composite Materials Fabricated by Wire Plus Arc Additive Manufacturing
1
作者 夏玉峰 ZHANG Xue +2 位作者 CHEN Lei JIANG Xianhong LIAO Hailong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期885-892,共8页
We focused on Ti/Al composite materials fabricated by wire and arc addictive manufacturing,and the microstructure and interface characteristics of them before and after hot compression deformation were compared.After ... We focused on Ti/Al composite materials fabricated by wire and arc addictive manufacturing,and the microstructure and interface characteristics of them before and after hot compression deformation were compared.After compression deformation,allαstructures of titanium were compacted with the emergence of Widmanstatten structures.Coarsened coloniesαof titanium were elongated and waved along the original growth direction,resulting in anisotropy of grains.Pores and Ti/Al intermetallic compounds of aluminum are significantly decreased after hot compression.Meanwhile,a good bonding interface between titanium and aluminum is obtained after hot compression,and the element diffusion is more intense.In addition,the mechanical properties and fracture behaviors of Ti/Al composite material with different clad ratio that is defined as the ratio of the thickness of titanium to that of the Ti/Al composite material are investigated by uniaxial tensile test.The experimental results show that the ultimate tensile strength of Ti/Al composite material is between that of single deposited titanium and aluminum,while the elongation of Ti/Al composite material with low clad ratio is lower than that of single aluminum due to the metallurgical reaction.As the clad ratio increases,the two component layers are harder to separate during deformation,which is resulted from the decrease of the inward contraction stress of three-dimensional stress caused by necking of aluminum.This work may promote the engineering application of Ti/Al bimetallic structures. 展开更多
关键词 wire plus arc additive manufacturing aluminium alloy titanium alloy bimetallic composite materials deformation mechanical properties
下载PDF
Damping and Mechanical Properties of Cocured Composite Laminates with Embedded Perforate Viscoelastic Layer 被引量:5
2
作者 Lijian Pan Boming Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第4期543-546,共4页
The composite laminates with embedded acrylonitrile butadiene rubber (NBR) layer were fabricated by cocuring process. The embedded layers were perforated with a series of small holes to allow resin to flow through t... The composite laminates with embedded acrylonitrile butadiene rubber (NBR) layer were fabricated by cocuring process. The embedded layers were perforated with a series of small holes to allow resin to flow through the damping layer and completely couple the structure to improve bending stiffness and interlaminar shearing strength of these cocured composite laminates. The damping, bending stiffness and shearing strength of these composite laminates with different perforation diameters were investigated. The experimental results show that increasing the perforation diameter leads to significant decreases in damping and significant increase in bending stiffness up to an area ratio of 7.065%. The area ratio here is defined as the ratio of perforation area to the total damping area. Beyond the area ratio of 7.065%, increasing the diameter to an area ratio of 50.24% results in only a slight variation in damping and bending stiffness. Moreover, increasing the perforation diameter does not always increase the shearing strength of the embedded viscoelastic layer. The shearing strength of embedded viscoelastic layer increases only when the area ratio is greater than 19.625%; instead, it will decrease. 展开更多
关键词 composite laminates Perforate viscoelastic layer Cocured DAMPING mechanical Properties
下载PDF
Microstructure and mechanical properties of TA15/TC11 graded structural material by wire arc additive manufacturing process 被引量:8
3
作者 He WANG Shu-yuan MA +2 位作者 Jia-chen WANG Tao LU Chang-meng LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第8期2323-2335,共13页
A graded structural material(GSM)with a material transition from TA15 to TC11 was fabricated by wire arc additive manufacturing(WAAM)method.The grain morphology,chemical composition,microstructure and mechanical prope... A graded structural material(GSM)with a material transition from TA15 to TC11 was fabricated by wire arc additive manufacturing(WAAM)method.The grain morphology,chemical composition,microstructure and mechanical properties of the as-deposited GSM were all characterized to investigate their variations along the deposition direction.The results indicate that from TA15 to TC11,the grain size decreases and a transition from columnar grains to equiaxed grains occurs.The content of alloy element alters greatly within a short distance,and the width of the mutation zone is 800μm.Both TA15 and TC11 regions exhibit basketweave microstructure withα-phase andβ-phase.However,during the transition from TA15 to TC11,theα-lath becomes fine,which leads to an increase in microhardness.The tensile test shows that the bonding strength at the interface is higher than the longitudinal strength of TA15,and the lateral elongation at the interface is higher than that of TA15 and TC11. 展开更多
关键词 wire arc additive manufacturing graded structural material grain morphology microstructure mechanical properties
下载PDF
Preparation and Mechanical Properties of Al_2O_3/Al Laminated Ceramic Matrix Composites 被引量:2
4
作者 黄康明 吴建青 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第5期891-896,共6页
Three series of Al2O3/Al laminated ceramic matrix composites,named SPA,SPV and HP,were fabricated by different methods.SPA and SPV were prepared using Al2O3 slices and Al slurry via screen printing and subsequent heat... Three series of Al2O3/Al laminated ceramic matrix composites,named SPA,SPV and HP,were fabricated by different methods.SPA and SPV were prepared using Al2O3 slices and Al slurry via screen printing and subsequent heat treatment in air or vacuum.HP samples were made by hot pressing the layered stack of Al foils and Al2O3 slices.SEM and XRD were applied to analyze the microstructure and the interlayer crystal phase.The bending strength,fracture toughness and fracture work of the samples made by the three methods were measured and compared.The results show that the composites have much better toughness and higher fracture work than the Al2O3 slice.Among the samples made by the three methods,the samples made by hot pressing have the optimum mechanical performance.The displacement-load curves and fracture mechanism were analyzed. 展开更多
关键词 laminateD ceramic matrix composite mechanical properties
下载PDF
Fly Ash/Paraffin Composite Phase Change Material Used to Treat Thermal and Mechanical Properties of Expansive Soil in Cold Regions 被引量:3
5
作者 Yong Chen Yinghao Huang +1 位作者 Min Wu Shuo Wang 《Journal of Renewable Materials》 SCIE EI 2022年第4期1153-1173,共21页
Phase change materials(PCMs)can store large amounts of energy in latent heat and release it during phase changes,which could be used to improve the freeze-thaw performance of soil.The composite phase change material w... Phase change materials(PCMs)can store large amounts of energy in latent heat and release it during phase changes,which could be used to improve the freeze-thaw performance of soil.The composite phase change material was prepared with paraffin as the PCM and 8%Class C fly ash(CFA)as the supporting material.Laboratory tests were conducted to reveal the influence of phase change paraffin composite Class C fly ash(CFA-PCM)on the thermal properties,volume changes and mechanical properties of expansive soil.The results show that PCM failed to establish a good improvement effect due to leakage.CFA can effectively adsorb phase change materials,and the two have good compatibility.CFA-PCM reduces the volume change and strength attenuation of the soil,and 8 wt.%PCM is the optimal content.CFA-PCM turns the phase change latent heat down of the soil and improves its thermal stability.CFA-PCM makes the impact small of freeze-thaw on soil pore structure damage and improves soil volume change and mechanical properties on a macroscopic scale.In addition,CFA-8 wt.%PCM treated expansive soil has apparent advantages in resisting repeated freeze-thaw cycles,providing a reference for actual engineering design. 展开更多
关键词 composite phase change material freeze-thaw performance expansive soil thermal properties mechanical properties
下载PDF
Mechanical and Rheological Properties of Bamboo Pulp Fiber Reinforced High Density Polyethylene Composites:Influence of Nano CaCO_(3)Treatment and Manufacturing Process with Different Pressure Ratings 被引量:1
6
作者 Cuicui Wang Xin Wei +3 位作者 Lee MSmith Ge Wang Shuangbao Zhang Haitao Cheng 《Journal of Renewable Materials》 SCIE EI 2022年第7期1829-1844,共16页
In order to investigate the effect of the relative motion of nano CaCO_(3)reinforced bamboo pulp fiber(BPF)/HDPE composite components on the mechanical performance,a comparative study was performed.BPF was treated by ... In order to investigate the effect of the relative motion of nano CaCO_(3)reinforced bamboo pulp fiber(BPF)/HDPE composite components on the mechanical performance,a comparative study was performed.BPF was treated by nano CaCO_(3)blending(BM)and impregnation modification(IM)technology.The composites were produced using hot press(HPMP),extrusion(EMP)and injection molding process(IMP).The physical morphology of BPF was similar at different manufacturing processes.Compared to the samples manufactured by HPMP,a decrease in the(specific)flexural strength of BPF/HDPE composites and an increase in those of composites treated by nano CaCO_(3)manufactured by EMP and IMP were observed.The injection molded composites exhibited the best values in the(specific)impact strength,(specific)tensile properties.IM had a greater effect on the rheological behavior of the composites than BM,and nano CaCO_(3)treatment most effectively affected the performance of the extrusion molded composites. 展开更多
关键词 Nano CaCO_(3) bamboo pulp fiber composites manufacturing process mechanical properties rheological properties
下载PDF
MORPHOLOGICAL,MECHANICAL,THERMAL AND TRIBOLOGICAL PROPERTIES OF ENVIRONMENTALLY FRIENDLY CONSTRUCTION MATERIALS:RECYCLED LDPE COMPOSITES FILLED BY BLAST FURNACE DUST
7
作者 Merve Tuna Kayili Gülser Çelebi Abdulmecit Guldas 《Journal of Green Building》 2020年第3期159-175,共17页
This study focused on developing a sustainable composite material using metallic wastes of the iron-steel industry and plastic wastes of the plastic industry in order to reduce resultant waste from the production proc... This study focused on developing a sustainable composite material using metallic wastes of the iron-steel industry and plastic wastes of the plastic industry in order to reduce resultant waste from the production processes of various industrial products and to sustain waste management of these industries.In this study,different amounts of blast furnace dust(BFD),which is the major iron-steel industry waste and is used as filler for recycled low-density polyethylene(LDPE),was mixed with LDPE to produce the composite material.The morphology,mechanical,vicat softening temperature thermal conductivity,hardness and wear resistance properties of BFD filled LDPE composites were assessed.The increasing of BFD in recycled LDPE improved the heat resistance,increased thermal conductivity and wear resistance of composite materials.In addition,it was found that the composite materials had sufficient mechanical properties,when mechanical tests were evaluated.These results showed that the produced composite material could be used in buildings as a floor coating material and thereby saving raw materials and resources,as well as potentially reducing environmental problems. 展开更多
关键词 Blast furnace dust LDPE plastic waste recycling compositeS mechanical properties floor coating material
下载PDF
Preparation, structure and properties of Mg/Al laminated metal composites fabricated by roll-bonding, a review 被引量:12
8
作者 Tingting Liu Bo Song +4 位作者 Guangsheng Huang Xianquan Jiang Shengfeng Guo Kaihong Zheng Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第8期2062-2093,共32页
Laminated metal composites(LMCs) are a unique composite material and have great application prospects in automobiles, ships, aircraft,and other manufacturing industries. As lightweight materials, the Mg/Al LMCs are ex... Laminated metal composites(LMCs) are a unique composite material and have great application prospects in automobiles, ships, aircraft,and other manufacturing industries. As lightweight materials, the Mg/Al LMCs are expected to combine the advantages of both Mg and Al alloys to broaden their application prospects. Roll-bonding is the most popular process for the fabrication of Mg/Al LMCs due to high production efficiency and good product quality stability. The roll-bonding process involves the deformation of the substrates and the formation of the interfacial diffusion layer. The latter will directly determine the interface bonding strength of Mg/Al LMCs. Bonding strength is very sensitive to the thickness of the reaction layer in the diffusion layer. When the thickness of the reaction layer exceeds 5 μm, the bonding strength decreases sharply. Therefore, controlling the thickness of the reaction layer is very important for the design of rolling parameters.The latest research also showed that the addition of intermediate layer metal and the construction of three-dimensional interfaces can further improve the interface bonding strength. How to apply these methods to roll-bonding is the focus of future research. Recently, a new rolling technique, corrugated roll/plat roll rolling+flat roll/flat roll rolling has been developed to fabricate Mg/Al LMCs. It can effectively promote the deformation of the hard layer and generate a wavy interface, resulting in the enhancement of the bonding quality and rolling quality.In the current review, the effects of rolling parameters and subsequent annealing on the interface structure of Mg/Al LMCs were elaborated in detail. The application of some special rolling techniques in the preparation of Mg/Al LMCs was also summarized. The latest research results on the relationship between interface structure and mechanical properties of Mg/Al LMCs were reviewed. Finally, further research directions in this field were proposed. 展开更多
关键词 Mg/Al laminated metal composites Roll-bonding Interface mechanical properties
下载PDF
Microstructures and mechanical properties of Ti−Al−V−Nb alloys with cluster formula manufactured by laser additive manufacturing 被引量:10
9
作者 Tian-yu LIU Xiao-hua MIN +2 位作者 Shuang ZHANG Cun-shan WANG Chuang DONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第10期3012-3023,共12页
Ti−Al−V−Nb alloys with the cluster formula,12[Al−Ti_(12)](AlTi_(2))+5[Al−Ti1_(4)](V,Nb)2Ti,were designed by replacing V with Nb based on the Ti−6Al−4V alloy.Single-track cladding layers and bulk samples of the alloys ... Ti−Al−V−Nb alloys with the cluster formula,12[Al−Ti_(12)](AlTi_(2))+5[Al−Ti1_(4)](V,Nb)2Ti,were designed by replacing V with Nb based on the Ti−6Al−4V alloy.Single-track cladding layers and bulk samples of the alloys with Nb contents ranging from 0 to 6.96 wt.%were prepared by laser additive manufacturing to examine their formability,microstructure,and mechanical properties.For single-track cladding layers,the addition of Nb increased the surface roughness slightly and decreased the molten pool height to improve its spreadability.The alloy,Ti−5.96Al−1.94V−3.54Nb(wt.%),exhibited better geometrical accuracy than the other alloys because its molten pool height was consistent with the spread layer thickness of the powder.The microstructures of the bulk samples contained similar columnar β-phase grains,regardless of Nb content.These grains grew epitaxially from the Ti substrate along the deposition direction,with basket-weaveα-phase laths within the columnar grains.Theα-phase size increased with increasing Nb contents,but its uniformity decreased.Along the deposition direction,the Vickers hardness increased from the substrate to the surface.The Ti−5.96Al−1.94V−3.54Nb alloy exhibited the highest Vickers hardness regardless of deposition position because of the optimal matching relationship between theα-phase size and its content among the designed alloys. 展开更多
关键词 Ti−Al−V−Nb alloy composition design laser additive manufacturing microstructure mechanical properties
下载PDF
The New Technology of Composite Materials Repairing by Light Wave 被引量:4
10
作者 赵志敏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第2期41-43,共3页
The repairing of damaged composite materials becomes a hot research subject in the late 1990s.In this paper a new technology of repairing composite materials is given on the basis of our previous research.The light wa... The repairing of damaged composite materials becomes a hot research subject in the late 1990s.In this paper a new technology of repairing composite materials is given on the basis of our previous research.The light wave of 675nm transmitted by optical fiber is used as repairing light source,special repairable adhesive which can be stimulated by the light is adopted.By comparing the stiffness of the composite material before and after being damaged,it can be concluded that the mechanical property will not be changed with the feasible repairing technology. 展开更多
关键词 light wave repairing mechanical property composite materials
下载PDF
Effects of Cerium on the Mechanical Properties of the ZA22/Al_2O_3 Composites 被引量:3
11
作者 于思荣 何镇明 +1 位作者 孟长生 陈凯 《Journal of Rare Earths》 SCIE EI CAS CSCD 1995年第1期27-31,共5页
ZA22/Al2O3 composites were prepared by means of squeeze casting process. The effects of Ce on the ultimate tensile strength (UTS), impact toughness, and hardness of the composites were studied. The results show that b... ZA22/Al2O3 composites were prepared by means of squeeze casting process. The effects of Ce on the ultimate tensile strength (UTS), impact toughness, and hardness of the composites were studied. The results show that both the UTS and the hardness are improved and the impact toughness is decreased with the increase of the volume fraction of fibers (Vf). After Ce is added ,UTS (Vf>15%) and the hardness are improved at room temperature because of the modification of Ce, but the impact toughness and UTS at elevated temperature are lowered.The filtered action of the fiber preform results in that the influence of the amount of Ce added from 0. 1 wt% to 0. 5 wt% on the mechanical properties of the composites can be ignored. 展开更多
关键词 CERIUM Zn-Al alloy AL2O3 composite materials mechanical property
下载PDF
Hybridizing micro-Ti with nano-B_(4)C particulates to improve the microstructural and mechanical characteristics of Mg-Ti composite 被引量:8
12
作者 S.Sankaranarayanan S.Jayalakshmi M.Gupta 《Journal of Magnesium and Alloys》 SCIE EI CAS 2014年第1期13-19,共7页
In this study,the effects of hybridizing micron-sized titanium particles with nano-sized boron carbide particles on the microstructural and mechanical properties of Mg-Ti composite were investigated.Microstructural ch... In this study,the effects of hybridizing micron-sized titanium particles with nano-sized boron carbide particles on the microstructural and mechanical properties of Mg-Ti composite were investigated.Microstructural characterization revealed grain refinement attributed to the presence of uniformly distributed micro-Ti particles embedded with nano-B_(4)C particulates.Electron back scattered diffraction(EBSD)analyses of the Mg-(Ti+B_(4)C)BM hybrid composite showed relatively more localized recrystallized grains and lesser tensile twin fraction,when compared to Mg-Ti.The evaluation of mechanical properties indicated that the best combination of strength and ductility was observed in the Mg-(Ti+B_(4)C)BM hybrid composite.The superior properties of the Mg-(Ti+B_(4)C)BM hybrid composite when compared to Mg-Ti can be attributed to the presence of nano-reinforcement,the uniform distribution of the hybridized particles and the better interfacial bonding between the matrix and the reinforcement particles achieved by nano-B_(4)C addition. 展开更多
关键词 composite materials Electron microscopy(SEM) Electron diffraction(electron back scattered diffraction) mechanical properties
下载PDF
A Review of Basic Mechanical Behavior of Laminated Bamboo Lumber 被引量:5
13
作者 Assima Dauletbek Haitao Li +3 位作者 Rodolfo Lorenzo Ileana Corbi Ottavia Corbi Mahmud Ashraf 《Journal of Renewable Materials》 SCIE EI 2022年第2期273-300,共28页
Over the past decade,the physical and mechanical performances of laminated bamboo lumber(LBL)–a bamboo-based structural material,have been extensively studied using experimental,analytical,and numerical approaches.Th... Over the past decade,the physical and mechanical performances of laminated bamboo lumber(LBL)–a bamboo-based structural material,have been extensively studied using experimental,analytical,and numerical approaches.This paper presents a review of existing knowledge in the literature about the mechanical properties of LBL.The paper involved the review of the response of LBL to different types of loading such as tension,bending,compres-sion,and shear.Based on results of the literature reviewed,the strength of LBL parallel to grain was 90–124 MPa with MOE of 10700 MPa in tension,29.55–72.60 MPa,and MOE of 8396–11022 MPa in compression,63.87–128.4 MPa,and MOE of 8320–10912 MPa in bending,and 7.15–17.5 MPa in shear.The average strength of LBL was similar and in some cases exceeded the average values of bamboo-or wood-based materials,while the variability of its mechanical parameters was lower.The variability in strength values of LBL was affected by bamboo species,density and thickness of bamboo strips,growth portion,type of treatment,strips arrange-ments,and type of adhesive which in turn calls for classification of LBL by strength grades,degree of hardness,the capability of impregnation and penetration,as well as by areas of application in construction.The study pro-vided and discussed concluding observations,the current research gap,and future research directions on the mechanical properties of LBL. 展开更多
关键词 laminated bamboo lumber mechanical properties compositeS
下载PDF
Structural design and mechanical performance of composite vascular grafts 被引量:3
14
作者 Abdul Wasy Zia Rong Liu Xinbo Wu 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2022年第4期757-785,共29页
This study reviews the state of the art in structural design and the corresponding mechanical behaviours of composite vascular grafts. We critically analyse surface and matrix designs composed of layered, embedded, an... This study reviews the state of the art in structural design and the corresponding mechanical behaviours of composite vascular grafts. We critically analyse surface and matrix designs composed of layered, embedded, and hybrid structures along the radial and longitudinal directions;materials and manufacturing techniques, such as tissue engineering and the use of textiles or their combinations;and the corresponding mechanical behaviours of composite vascular grafts in terms of their physical–mechanical properties, especially their stress–strain relationships and elastic recovery. The role of computational studies is discussed with respect to optimizing the geometrics designs and the corresponding mechanical behaviours to satisfy specialized applications, such as those for the aorta and its subparts. Natural and synthetic endothelial materials yield improvements in the mechanical and biological compliance of composite graft surfaces with host arteries. Moreover,the diameter, wall thickness, stiffness, compliance, tensile strength, elasticity, and burst strength of the graft matrix are determined depending on the application and the patient. For composite vascular grafts, hybrid architectures are recommended featuring multiple layers, dimensions, and materials to achieve the desired optimal flexibility and function for complying with user-specific requirements. Rapidly emerging artificial intelligence and big data techniques for diagnostics and the threedimensional(3D) manufacturing of vascular grafts will likely yield highly compliant, subject-specific, long-lasting, and economical vascular grafts in the near-future. 展开更多
关键词 Vascular grafts Surface design Structural design composite materials mechanical properties
下载PDF
A new synthetic route to MgO–MgAl2O4–ZrO2 highly dispersed composite material through formation of Mg5Al2.4Zr1.7O12 metastable phase: synthesis and physical properties 被引量:1
15
作者 Peng Jiang Guo-xiang Yin +3 位作者 Ming-wei Yan Jia-lin Sun Bin Li Yong Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第3期332-341,共10页
Mg_5Al_(2.4)Zr_(1.7)O_(12) metastable phase was successfully synthesized from analytical-grade Mg O,α-Al_2O_3,MgAl_2O_4,and ZrO_2 under an N_2 atmosphere.The sintering temperature was varied from 1650 to 1780°C,... Mg_5Al_(2.4)Zr_(1.7)O_(12) metastable phase was successfully synthesized from analytical-grade Mg O,α-Al_2O_3,MgAl_2O_4,and ZrO_2 under an N_2 atmosphere.The sintering temperature was varied from 1650 to 1780°C,and the highest amount of Mg_5Al_(2.4)Zr_(1.7)O_(12) appeared in the composite material when the sintering temperature was 1760°C.According to our research of the formation mechanism of Mg_5Al_(2.4)Zr_(1.7)O_(12),the formation and growth of MgAl_2O_4 dominated when the temperature was not higher than 1650°C.When the temperature was higher than 1650°C,MgO and ZrO_2 tended to diffuse into MgAl_2O_4 and the Mg_5Al_(2.4)Zr_(1.7)O_(12) solid solution was formed.When the temperature reached 1760°C,the formation of Mg_5Al_(2.4)Zr_(1.7)O_(12) was completed.The effect of Mg Al_2O_4 spinel crystals was also studied,and their introduction into the composite material promoted the formation and growth of Mg_5Al_(2.4)Zr_(1.7)O_(12).A highly dispersed MgO–Mg Al_2O_4–ZrO_2 composite material was prepared through the decomposition of the Mg_5Al_(2.4)Zr_(1.7)O_(12) metastable phase.The as-prepared composite material showed improved overall physical properties because of the good dispersion of MgO,MgAl_2O_4,and ZrO_2 phases. 展开更多
关键词 METASTABLE PHASES formation mechanisms composite materialS refractory materialS SYNTHESIS physical properties
下载PDF
Optimized design and preparation of Ti/TiAl laminated composite 被引量:1
16
作者 马李 赫晓东 李垚 《中国有色金属学会会刊:英文版》 CSCD 2005年第S3期48-52,共5页
Laminated composite is a new type of composite structure which is used to improve the fracture toughness and flexure strength and is good for optimizing the mechanical properties of intermetallics. On the basis of bio... Laminated composite is a new type of composite structure which is used to improve the fracture toughness and flexure strength and is good for optimizing the mechanical properties of intermetallics. On the basis of bionic principle, the optimized design (via establishing the mathematical model, stress intensity factor K_Ⅰ was computed by the finite element method) of Ti/TiAl laminated composite was studied by varying the thickness ratio and layer amounts, then the raw materials of Ti and TiAl were evaporated and deposited alternatively to form laminated metal/intermetallic composites in vacuum chamber by electron beam physical vapor deposition method. The results show that the toughness of TiAl is improved and agrees well with theoretical analysis. 展开更多
关键词 optimized design laminateD material mechanical properties ELECTRON BEAM PHYSICAL VAPOUR DEPOSITION
下载PDF
Mechanical properties and failure behavior of 3D printed thermoplastic composites using continuous basalt fiber under high-volume fraction 被引量:1
17
作者 Hang Zhang Wei-fu Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期237-250,共14页
Continuous basalt fiber(CBF)is an outstanding inorganic fiber produced from nature,which has a wide range of applications in the field of armor protection of national defense military.However,the mechanical response a... Continuous basalt fiber(CBF)is an outstanding inorganic fiber produced from nature,which has a wide range of applications in the field of armor protection of national defense military.However,the mechanical response and failure mechanism of 3D printed CBF reinforced components are still not well understood.Here,the 3D printing thermoplastic composites with high volume fraction CBF have been successfully prepared by fused deposition modelling(FDM)method.The effects of fiber printing direction and polymer matrix type on the tensile and flexural properties of the 3D printed composites have been explored,and the detailed failure morphology has been characterized using scanning electron microscopy and optical microscopy.It was found that under high fiber volume fraction,3D printed CBF reinforced polyamides(PA)composites have the best ability to maintain material integrity of the composites,followed by acrylonitrile butadiene styrene(ABS)and high impact polystyrene(HIPS).Besides,the results from rule of mixtures can accurately predict the longitudinal Young’s modulus of the 3D printed specimens,but there exists a large discrepancy for the prediction of the tensile strength.The microstructure analysis shows that the failure modes of 3D printed composites mainly include fiber debonding,fiber pull-out,stress whitening and matrix cracking. 展开更多
关键词 Additive manufacturing Continuous basalt fiber Failure behavior mechanical properties Thermoplastic composites
下载PDF
Mechanical Properties with High Temperature and the Microstructure of Carbon/Phenolic Ablative Composites 被引量:1
18
作者 王天波 鞠玉涛 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期967-972,共6页
Carbon fiber reinforced phenolic based composites were prepared by laminating molding. The variation in mechanical characteristics of composites was evaluated with heating temperature and procedure. The microstructure... Carbon fiber reinforced phenolic based composites were prepared by laminating molding. The variation in mechanical characteristics of composites was evaluated with heating temperature and procedure. The microstructures of composites at different temperatures were observed by optical microscope and scanning electron microscope, respectively. The results showed that the main weight loss range of carbon/phenolic is from 300 to 800 ℃, before 700 ℃ the weight loss was resulted from pyrolysis and after that the weight loss was mainly by oxidation in the fiber phase; with the heat treatment temperature rising, the bonding at the interface of carbon fibers and resin matrix weakened; in the pyrolysis temperature range, the interlaminar shear strength(ILSS) of carbon/phenolic showed a rapid drop with temperature rising, and then decrease in the rate of ILSS became relatively slower; the fiber oxidation had little influence on the ILSS. 展开更多
关键词 composite materials high temperature microstructure mechanical properties
下载PDF
EFFECT OF SILANE COUPLING AGENT ON THE MECHANICAL,THERMAL PROPERTIES AND MORPHOLOGY OF TREMOLITE/PA1010 COMPOSITES
19
作者 刘凤岐 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2008年第3期255-262,共8页
Tremolite,a kind of inorganic filler,was modified with a silane coupling agentγ-methacryloxypropyl trimethoxy silane (MPS) in ethanol/ammonia solution.The graft of MPS on tremolite was confirmed by X-ray photoelectro... Tremolite,a kind of inorganic filler,was modified with a silane coupling agentγ-methacryloxypropyl trimethoxy silane (MPS) in ethanol/ammonia solution.The graft of MPS on tremolite was confirmed by X-ray photoelectron spectroscopy (XPS),IR and thermogramitric analysis (TGA) measurements.In addition,contact angle analysis showed that particle surface property was changed from hydrophilicity to hydrophobicity after the modification.Modified tremolite and pure tremolite were blended respectively with PA1010 (p... 展开更多
关键词 TREMOLITE MPS composite materials mechanical properties.
下载PDF
Composition,Processing Technology and Property of Ceramic Die Materials Containing Rare Earth Additives
20
作者 肖光春 许崇海 方斌 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S2期287-292,共6页
Development and application of new ceramic die materials is one of the important topics in the field of die research. The composition, processing technology, mechanical property and engineering performance of the cera... Development and application of new ceramic die materials is one of the important topics in the field of die research. The composition, processing technology, mechanical property and engineering performance of the ceramic materials such as cermet, ZTA, TZP, TZP/Al2O3, TZP/TiC/Al2O3, PSZ and Sialon, etc., with rare earth yttrium, lanthanum and cerium, and so on working as additives, were investigated and analyzed in the present study. Problems existed in the research and application of rare earth ceramic die materials were discussed. Rare earth additives can effectively improve the mechanical property and engineering performance of ceramic die materials. Thus, it will have further perspectives of wider application. More attention should be paid in the future to the toughening and strengthening of the ceramic die materials, the adding forms and kinds of rare earth elements and acting mechanisms of rare earth additives in ceramic die materials. 展开更多
关键词 ceramic die material COMPOSITION processing technology mechanical property engineering performance rare earths
下载PDF
上一页 1 2 69 下一页 到第
使用帮助 返回顶部