期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental study on axial compressive behaviors of prefabricated composite thermal insulation walls after single-side fire exposure
1
作者 Fu Qian Zhu Xiaojun +4 位作者 Liang Shuting Yang Jian Li Xiangmin Xu Qingfeng Gao Mingzhu 《Journal of Southeast University(English Edition)》 EI CAS 2018年第2期220-228,共9页
The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial ... The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial bearing capacity of four prefabricated composite walls after fire treatment is carried out.Two of the prefabricated composite walls are normal-temperature specimens,and the others are treated with fire.The damage modes and crack development are observed,and the axial bearing capacity,lateral deformation of the specimens,and the concrete and reinforcing bar strain are tested.The results show that the ultimate bearing capacity of specimens after a fire is less than that of normal-temperature specimens;when the insulation board thicknesses are 40 mm and 60 mm,the decrease amplitudes are 20.8%and 16.8%,respectively.The maximum lateral deformation of specimens after a fire is greater than that of normal-temperature specimens,and under the same level of load,the lateral deformation increases as the insulation board thickness increases.Moreover,the strain values of the concrete and reinforcing bars of specimens after a fire are greater than those of normal-temperature specimens,and the strain values increase as the thickness of insulation board increases. 展开更多
关键词 prefabricated composite thermal insulation walls expandable polystyrene board fire exposure insulation layer post-re axial compressive behavior
下载PDF
Influence of materials’hygric properties on the hygrothermal performance of internal thermal insulation composite systems
2
作者 Lingjie Zeng Yuqing Chen +4 位作者 Changsheng Cao Lipeng Lv Jun Gao Jingguang Li Chongyang Zhang 《Energy and Built Environment》 2023年第3期315-327,共13页
Internal thermal insulation composite system(ITICS)can be an important measure for the energy-saving retrofitting of buildings.However,ITICS may cause harmful effects on the hygrothermal performance of building envelo... Internal thermal insulation composite system(ITICS)can be an important measure for the energy-saving retrofitting of buildings.However,ITICS may cause harmful effects on the hygrothermal performance of building envelopes.This work investigated the influence of the materials’hygric properties on the hygrothermal perfor-mance of a typical ITICS in different climate conditions in China.Two base wall materials,the traditional concrete and a new type aerated concrete,were tested and compared for their hygric properties firstly.The influence of the hygroscopicity of exterior plasters,the permeability of insulation materials and the climate conditions were then analyzed with WUFI simulations.The hygrothermal performance was evaluated with consideration of the total water content(TWC)of the walls and the moisture flux strength,the relative humidity(RH)and the mould growth risk at the interface between the base wall and the insulation layer(B-I interface).The numerical analysis implies that the TWC of internal insulated walls depends mainly on the hygroscopicity of exterior plaster and the wind-driven rain intensity.The upper limits for the water absorption coefficient of exterior plasters used in Bei-jing,Shanghai and Fuzhou are 1e-9,1e-10,1e-10 m^(2)/s respectively.When such limits are guaranteed,a vapour tight system created by using insulation materials with a large vapour resistance factor or adding a vapour barrier can improve the hygrothermal performance of ITICS,especially for concrete walls in cold climate. 展开更多
关键词 Internal thermal insulation composite systems Hygrothermal performance assessment Hygirc properties of building materials Different climate conditions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部