期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Tensile Strain Capacity Prediction of Engineered Cementitious Composites (ECC) Using Soft Computing Techniques
1
作者 Rabar H.Faraj Hemn Unis Ahmed +2 位作者 Hardi Saadullah Fathullah Alan Saeed Abdulrahman Farid Abed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2925-2954,共30页
Plain concrete is strong in compression but brittle in tension,having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures,even when steel reinforcing is presen... Plain concrete is strong in compression but brittle in tension,having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures,even when steel reinforcing is present.In order to address these challenges,short polymer fibers are randomly dispersed in a cement-based matrix to forma highly ductile engineered cementitious composite(ECC).Thismaterial exhibits high ductility under tensile forces,with its tensile strain being several hundred times greater than conventional concrete.Since concrete is inherently weak in tension,the tensile strain capacity(TSC)has become one of the most extensively researched properties.As a result,developing a model to predict the TSC of the ECC and to optimize the mixture proportions becomes challenging.Meanwhile,the effort required for laboratory trial batches to determine the TSC is reduced.To achieve the research objectives,five distinct models,artificial neural network(ANN),nonlinear model(NLR),linear relationship model(LR),multi-logistic model(MLR),and M5P-tree model(M5P),are investigated and employed to predict the TSCof ECCmixtures containing fly ash.Data from115 mixtures are gathered and analyzed to develop a new model.The input variables include mixture proportions,fiber length and diameter,and the time required for curing the various mixtures.The model’s effectiveness is evaluated and verified based on statistical parameters such as R2,mean absolute error(MAE),scatter index(SI),root mean squared error(RMSE),and objective function(OBJ)value.Consequently,the ANN model outperforms the others in predicting the TSC of the ECC,with RMSE,MAE,OBJ,SI,and R2 values of 0.42%,0.3%,0.33%,0.135%,and 0.98,respectively. 展开更多
关键词 Engineered cementitious composites fly ash curing time tensile strain capacity MODELING
下载PDF
Impact Properties of Engineered Cementitious Composites with High Volume Fly Ash Using SHPB Test 被引量:8
2
作者 陈智韬 杨英姿 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第3期590-596,共7页
The split Hopkinson pressure bar (SHPB) testing with diameter 40 mm was used to investigate the dynamic mechanical properties of engineered cementitious composites (ECCs) with different fly ash content. The basic ... The split Hopkinson pressure bar (SHPB) testing with diameter 40 mm was used to investigate the dynamic mechanical properties of engineered cementitious composites (ECCs) with different fly ash content. The basic properties including deformation, energy absorption capacity, strain-stress relationship and failure patterns were discussed. The ECCs showed strain-rate dependency and kept better plastic flow during impact process compared with reactive powder concrete (RPC) and concrete, but the critical compressive strength was lower than that of RPC and concrete. The bridging effect of PVA fiber and addition of fly ash can significantly improve the deformation and energy absorption capacities of ECCs. With the increase of fly ash content in ECCs, the static and dynamic compressive strength lowered and the dynamic increase factor enhanced. Therefore, to meet different engineering needs, the content of fly ash can be an important index to control the static and dynamic mechanical properties of ECCs. 展开更多
关键词 engineered cementitious composites high volume fly ash impact properties SHPB
下载PDF
Effect of fly ash content and grit size on mechanical and tribological properties of PVC composites 被引量:4
3
作者 林健明 熊党生 《中国有色金属学会会刊:英文版》 CSCD 2005年第S3期457-461,共5页
The polyvinyl chloride (PVC) composites containing fly ash of various grit sizes and contents were prepared by hot pressing. The hardness, impact strength of the composites were measured, and their friction and wear p... The polyvinyl chloride (PVC) composites containing fly ash of various grit sizes and contents were prepared by hot pressing. The hardness, impact strength of the composites were measured, and their friction and wear properties under dry and water lubrication sliding against quenched AISI-1045 steel were evaluated on an MM-200 tester. The fractograph of impact specimens, worn surfaces of the composites and their transfer films on the counterpart steel surfaces were observed with a scanning electron microscope and an optical microscope. Experimental results show that the composites containing 50% 74147μm fly ash have the highest hardness, highest impact strength and smallest wear rate. The wear rate of the composite is reduced by over two orders of magnitude. However, the composite containing over 50% fly ash has decreased wear-resistance, which is attributed to the weakened interaction between the filler and the polymer matrix in the presence of inadequate polymer matrix. The improved wear-resistance of the composite under dry sliding against the steel is attributed to the formation of the composite transfer film thereon. 展开更多
关键词 PVC composite fly ash friction and WEAR impact strength HARDNESS
下载PDF
Influence of processing route on microstructure and wear resistance of fly ash reinforced AZ31 magnesium matrix composites 被引量:4
4
作者 I.Dinaharan S.C.Vettivel +1 位作者 M.Balakrishnan E.T.Akinlabi 《Journal of Magnesium and Alloys》 SCIE EI CAS 2019年第1期155-165,共11页
Utilizing fly ash(FA)as reinforcement for magnesium matrix composites(MMCs)brings down the production cost and the land pollution.Magnesium alloy AZ31 was reinforced with FA particles(10 vol.%)successfully by two diff... Utilizing fly ash(FA)as reinforcement for magnesium matrix composites(MMCs)brings down the production cost and the land pollution.Magnesium alloy AZ31 was reinforced with FA particles(10 vol.%)successfully by two different processing methods namely conventional stir casting and friction stir processing(FSP).The microstructural features were observed using optical microscope,scanning electron microscope and electron backscatter diffraction.The sliding wear behavior was tested using a pin-on-disc wear apparatus.The stir cast composite showed inhomogeneous particle dispersion and coarse grain structure.Some of the FA particles decomposed and reacted with the matrix alloy to produce undesirable compounds.Conversely,FSP composite showed superior particle dispersion and fine,equiaxed grains by dynamic recrystallization.FA particles encountered disintegration but there was no interfacial reaction.FSP composite demonstrated higher strengthening and wear resistance to that of stir cast composite.The morphology of the worn surface and the wear debris were studied in detail. 展开更多
关键词 Magnesium matrix composite Stir casting Friction stir processing fly ash WEAR
下载PDF
MANUFACTURING OF ALUMINUM/FLY ASH COMPOSITE WITH LIQUID REACTIVE SINTERING TECHNOLOGY 被引量:6
5
作者 X.F. Zhang, D.J. Wang and G. XieThe Faculty of Material and Metallurgical Engineering, Kunming University of Science and Technology, Kunming 650093, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第5期465-470,共6页
The Al/fly ash composites are fabricated by liquid reactive sintering P/M process with fly ash particles as intensifying phases. The reactivity and newly formed phases during liquid sintering process have been analyze... The Al/fly ash composites are fabricated by liquid reactive sintering P/M process with fly ash particles as intensifying phases. The reactivity and newly formed phases during liquid sintering process have been analyzed by combing Thermochemicdl data base calculation and XRD characterization. The results show that some of constituents in fly ash have reacted with liquid aluminum so that the elemental Si, Fe, Ti as well as some amount of intermetallic compounds occur. The properties of aluminum/fly ash composites have been improved. With the fraction of fly ash increase, the composite density decreases; the hardness and the modulus of the composite increases, and the composite wear resistance are significantly increased. The fly ash reinforced composites represent a sort of low cost product with possible widespread applications in the automotive, small engine, and electromechanical machinery sectors. 展开更多
关键词 aluminum/fly ash composite liquid reactive sintering
下载PDF
Damping properties of fly ash/epoxy composites 被引量:2
6
作者 Jian Gu Gaohui Wu Xiao Zhao 《Journal of University of Science and Technology Beijing》 CSCD 2008年第4期509-513,共5页
An inexpensive fly ash (FA), which is from a waste product, was employed to prepare fly ash/epoxy composites. The purpose of this study is to characterize the contributions of matrix viscoelasticity, hollow structur... An inexpensive fly ash (FA), which is from a waste product, was employed to prepare fly ash/epoxy composites. The purpose of this study is to characterize the contributions of matrix viscoelasticity, hollow structure characteristic (porosity), and filler/matrix interface friction to the high vibration damping capacity of such composites. The damping properties of the composites were investigated in the temperature range of-40 to 150℃ and in the frequency range of 10 to 800 Hz by using a tension-compression mode. The results indicate that the peak value of damping loss factor (tan3) for the fly ash/epoxy composites can reach 0.70-0.90 in test specification, and the attenuation of damping loss factor is inconspicuous with increasing frequency. In addition, scanning electron microscope (SEM) was used to observe the morphology of the fly ash as well as its distribution in the matrix, which will help to analyze the effect of fly ash on the damping properties of the fly ash/epoxy composites. 展开更多
关键词 compositeS EPOXY fly ash damping property loss factor
下载PDF
Growth of Carbon Nanotubes by Pyrolysis of Composite Film of Poly (Vinyl Alcohol) and Modified Fly Ash
7
作者 Dilip C. D. Nath Veena Sahajwalla 《Materials Sciences and Applications》 2012年第2期120-124,共5页
We found carbon nanotube (CNT) materials by the pyrolysis of the composite film of poly (vinyl alcohol) (PVA) reinforced with modified fly ash (FA) at 500°C for 10 min under 2 L/min flow of nitrogen. Fly ash was ... We found carbon nanotube (CNT) materials by the pyrolysis of the composite film of poly (vinyl alcohol) (PVA) reinforced with modified fly ash (FA) at 500°C for 10 min under 2 L/min flow of nitrogen. Fly ash was treated with 2M sodium hydroxide and used with PVA to fabricate the composite film by aqua casting. CNT materials were analyzed using XPS, Raman, SEM and TEM. The admixtures of CNT materials and FA are a potential filler material for fabricating composites with polymer and metal. The process is an eco-friendly recycling paradigm for using value-added advanced products for the proper management of sustainable waste materials, plastic and FA. 展开更多
关键词 POLY (Vinly Alcohol) Modified fly ash composite and Carbon NANOTUBE
下载PDF
Interlaminar Fracture Toughness of Epoxy Glass Fiber Fly Ash Laminate Composite
8
作者 Ajit Bhandakkar Niraj Kumar +1 位作者 R. C. Prasad Shankar M. L. Sastry 《Materials Sciences and Applications》 2014年第4期231-244,共14页
Epoxy glass fiber laminate composite (PMCs) are finding ever increasing applications in aerospace and automobile industries due to its high strength to weight ratio and resistance to aqueous environment. Additions of ... Epoxy glass fiber laminate composite (PMCs) are finding ever increasing applications in aerospace and automobile industries due to its high strength to weight ratio and resistance to aqueous environment. Additions of particulate reinforcements in the polymer matrix are reported to improve the Interlaminar Shear Strength and Interlaminar Fracture Toughness of the composites. In the present investigation, epoxy glass fiber laminate composites were processed using hand layup and vacuum bagging technique. The particulate reinforcement precipitator fly ash (25 - 45 μm) was added in the epoxy matrix by mechanical mixing up to 10 wt%. The effects of fly ash reinforcement on the mechanical properties and Interlaminar Fracture Toughness were studied before and after exposure to aqueous fog in a salt fog chamber at 45°C. In unexposed condition Mode I interlaminar fracture toughness of epoxy glass fiber laminate composite improved by the addition of fly ash reinforcement 10% (By weight) by 49.43% and when it was subjected to aqueous fog for 10 days the interlaminar fracture toughness improved 58.42%. Exposure to aqueous fog for 10 days causes plasticization of resin matrix and weakening of fiber/matrix interface results in improvement in interlaminar fracture toughness. The fracture surfaces were analyzed using scanning electron microscopy. 展开更多
关键词 INTERLAMINAR Fracture TOUGHNESS EPOXY Glass Fiber LAMINATE composite fly ash
下载PDF
A Review on Utilization of Light Weight Fly Ash Cenosphere as Filler in both Polymer and Alloy-Based Composites
9
作者 Shashikant Kushnoore Nitin Kamitkar +2 位作者 Vinay Atgur Mallikarjun S Uppin MSatishkumar 《Journal of Mechanical Engineering Research》 2020年第2期17-23,共7页
Fly Ash Cenospheres(FACs)are obtained from the coal power plants in the form of hollow spherical particles by burning the coal.FAC was started to use in early 1980-1985 as lightweight filler material in producing comp... Fly Ash Cenospheres(FACs)are obtained from the coal power plants in the form of hollow spherical particles by burning the coal.FAC was started to use in early 1980-1985 as lightweight filler material in producing composites of cementitious and at present many researchers are focusing on use of FAC as filler in polymer and metals.In this paper,the systematic review on research activities and application of FAC in manufacturing light weight products are done.The influence of FAC on the physical and mechanical properties of incorporated polymer and alloy-based composites were summarized.Prospects of future for its use were also suggested and summarized in this paper. 展开更多
关键词 fly ash cenosphere Polymer and Alloy composites Mechanical and Physical properties
下载PDF
MECHANICAL PROPERTIES AND MICROSTRUCTURE OF COMPOSITE BINDERS CONTAINING SHALE ASH AND FLY ASH 被引量:1
10
作者 闫培渝 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1998年第4期1-8,共8页
The microstructure and the mechanical properties of hardened mortars made of superplasticized composite binder containing shale ash and fly ash are investigated. The pozzolanic reaction consumes the oriented Ca (OH)/... The microstructure and the mechanical properties of hardened mortars made of superplasticized composite binder containing shale ash and fly ash are investigated. The pozzolanic reaction consumes the oriented Ca (OH)//2 crystals, thus making the transition zone dense. Appropriately proportioning of shale ash and fly ash decreases the water requirement and increases the packing density of composite binder mortars, therefore increases their strength. Superplasticizer promotes the carbonation of calcium hydrates and the formation of ettringite that is transformed gradually into mono-sulfoaluminate hydrate in composite binder mortars. The joint action of fine complex mineral admixture and superplasticizer has a synergistic effect to improve the mechanical properties of composite binder. (Author abstract) 7 Refs. 展开更多
关键词 composite binders shale ash fly ash super plasticizer mechanical property microstructural study
全文增补中
Preparation of Reactive Powder Concrete Using Fly Ash and Steel Slag Powder 被引量:5
11
作者 彭艳周 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第2期349-354,共6页
To decrease the cement and SF content of RPC by using ultra-fine fly ash (UFFA) and steel slag powder (SS), the effect of these mineral admixtures on compressive strength of RPC were investigated. The experimental... To decrease the cement and SF content of RPC by using ultra-fine fly ash (UFFA) and steel slag powder (SS), the effect of these mineral admixtures on compressive strength of RPC were investigated. The experimental results indicate that the utilization of UFFA and SS in RPC is feasible and has prominent mechanical performance. The microstructure analysis (SEM and TG-DTG-DSC) demonstrated that the excellent mechanical properties of RPC containing SS and UFFA were mainly attributed to the sequential hydration filling effect of the compound system. 展开更多
关键词 ultra-fine fly ash steel slag powder reactive powder concrete sequential hydration MICROSTRUCTURE STRENGTH
下载PDF
Preparation of ZrN(ZrON)-SiAION Composite Ceramics via a Pressureless Sintering Process 被引量:2
12
作者 MA Beiyue LI Ying +1 位作者 LU Zhongxin YU Jingkun 《China's Refractories》 CAS 2014年第4期45-48,共4页
ZrN-SiAlON composite materials were synthesized at 1 550 ℃ for 6 h via a carbothermal reduction nitridation route using fly ash (≤74 μm),zircon (≤ 44 μm) and active carbon as starting materials.The processed ... ZrN-SiAlON composite materials were synthesized at 1 550 ℃ for 6 h via a carbothermal reduction nitridation route using fly ash (≤74 μm),zircon (≤ 44 μm) and active carbon as starting materials.The processed ZrN-SiAlON composite micropowders were mixed with polyvinyl alcohol as binder to prepare ZrN (ZrON)-SiAlON composite ceramics by carbon-embedded pressureless firing at 1 450,1 500 and 1 550 ℃ for 1 h,respectively.Influences of firing temperature on the phase compositions,microstructure and sintering properties of the ceramics were investigated.The results show that:(1) β-SiAlON based composite ceramics with different compositions can be prepared by controlling firing temperature,and the main crystalline phases of the specimen fired at 1 550 ℃ for 1 h involve ZrN,ZrON and β-SiAlON (z =2,Si4Al2O2N6); (2) ZrN (ZrON),β-SiAlON and a Fe-Si based compound can be observed in the microstructures of the specimens fired at different temperatures.ZrN (ZrON) particles distribute homogeneously in the β-SiAlON matrix; (3) raising firing temperature can increase the shrinkage ratio of the ceramics,and the volume shrinkage ratio increases from 19.4% to 40.3% when the firing temperature rises from 1 450 to 1 550 ℃. 展开更多
关键词 ZrN (ZrON)-SiAlON composite ceramics pressureless sintering process fly ash ZIRCON
下载PDF
Mineralogical and Active Mechanical Excitation Characteristics of Filled Fly Ash Cementitious Materials 被引量:7
13
作者 杜雨婷 WANG Hongfu +2 位作者 WANG Zhongchang WANG Zechuan XIA Hongchun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期413-416,共4页
To reveal the influence of mechanical activation on the performance of fly ash, the microanalysis(the energy spectroscopy, XRD and SEM), the distribution size of particle of fly ash and cement paste intensity of var... To reveal the influence of mechanical activation on the performance of fly ash, the microanalysis(the energy spectroscopy, XRD and SEM), the distribution size of particle of fly ash and cement paste intensity of various age for different grinding time were studied. The relationships of the activity and the composition of fly ash, microstructure and the distribution of particle size by mechanical activation of fly ash were obtained. The internal glass beads with activity were released by grinding fly ash for a certain time. The particle specific surface area was improved and the hydration reaction of the interface and the surface active center was increased by grinding. The granularity distributing of fly-ash trended towards optimization. The polar molecules or ions were easier to intrude into the internal cavity of the vitreous body. The active silica and alumina of fly ash were rapidly depolymerized. Each performance index of fly ash was increased before grinding for 20 min. Cement paste intensity of various age increased along with the grinding time, and the early strength increase range was big, but the later period intensity increase range hastened slightly. The internal part of vitreous of fly ash was destroyed if the fly ash continued to be ground and the activity of fly ash was reduced. It is suggested that Guozhuang's fly ash should be ground for 20 min. 展开更多
关键词 fly ash mineral composition the distribution of particle size milling time activity
下载PDF
Methods of Modifying the Brittle Behavior of Cementitious Composites 被引量:1
14
作者 庞超明 LEUNG Christopher KY 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第1期156-161,共6页
We put forward effective methods of increasing the tensile strain of cementitious composites with 2% PVA fiber and high fly ash content. The test results show that curing condition has a significantly effect on the te... We put forward effective methods of increasing the tensile strain of cementitious composites with 2% PVA fiber and high fly ash content. The test results show that curing condition has a significantly effect on the tensile performance. It is approved that the specimens incorporated appropriate volume fraction rubber powder and lightweight aggregate greatly increase the tensile strain of composites at medium-term age, but indefinitely at long-term age. To a certain extent, EVA can limitedly enhance the tensile performance of comentitious composites owing to the formation of polymer membrane and the hindered hydration of cement. 展开更多
关键词 high-ductility cementitious composites (HDCC) tensile properties high content of fly ash rubber powder light aggregate ethylene vinyl alcohol latex powder
下载PDF
Analysis of chemical composition of precipitation in a typical background site
15
作者 Liu Jiaqi, Shi LiliYunnan Provincial Environmental Monitoring Center Station, Kunming 650034, China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1998年第3期70-78,共9页
AnalysisofchemicalcompositionofprecipitationinatypicalbackgroundsiteLiuJiaqi,ShiLiliYunnanProvincialEnviro... AnalysisofchemicalcompositionofprecipitationinatypicalbackgroundsiteLiuJiaqi,ShiLiliYunnanProvincialEnvironmentalMonitoring... 展开更多
关键词 fly ash BACKGROUND PRECIPITATION CHEMICAL composition.
下载PDF
Effects of Semi-solid Isothermal Heat Treatment on Microstructures and Damping Capacities of Fly Ash Cenosphere/AZ91D Composites
16
作者 En-Yang Liu Si-Rong Yu +3 位作者 Ming Yuan Fan-Guo Li Yan Zhao Wei Xiong 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第9期953-962,共10页
The fly ash cenosphere/AZ91D composites were successfully prepared and isothermally heat-treated at different tem- peratures for different time. The effects of semi-solid isothermal heat treatment on the microstructur... The fly ash cenosphere/AZ91D composites were successfully prepared and isothermally heat-treated at different tem- peratures for different time. The effects of semi-solid isothermal heat treatment on the microstructures and damping capacities of fly ash cenosphere/AZ91D composites were investigated. With the increase in isothermal temperature or holding time, the small liquid droplets within grains increased in size but decreased in quantity. The average size and shape factor of Mg2Si particles increased with the rise of isothermal temperature. The damping capacities of the composites were improved by isothermal heat treatment. At room temperature, the composites after heat treatment at 520 and 550 ℃ had a higher damping capacity due to interface damping when the strain amplitude was lower than about 8.8 × 10^-5, and the composite after heat treatment at 580 ℃ had a better damping capacity because of the dislocation damping under the condition of high strain amplitude. The damping capacities of the composites increased with the rise of the test temper- ature, and the damping mechanisms varied depending on different test temperatures. The interface damping played an important role when the test temperature was below about 100 ℃, and the dislocation damping and grain boundary damping took effect with the rise of test temperature. 展开更多
关键词 fly ash cenosphere Magnesium matrix composite Semi-solid isothermal heat treatment Microstructuralevolution Damping capacity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部