A test method based on the condition simulation and a friction and wear test machine featuring in oscillatory movement were set up for self-lubricating spherical plain bearings (SPB). In the machine the condition para...A test method based on the condition simulation and a friction and wear test machine featuring in oscillatory movement were set up for self-lubricating spherical plain bearings (SPB). In the machine the condition parameters such as load, angle and frequency of oscillation and number of test cycles can be properly controlled. The data relating to the tribological properties of the bearing, in terms of friction coefficient, linear wear amount, temperature near friction surface and applied load, can be monitored and recorded simultaneously during test process by a computerized measuring system of the machine. Efforts were made to improve the measurement technology of the friction coefficient in oscillating motion. In result, a well-designed bearing torque mechanism was developed, which could reveal the relation between the friction coefficient and the displacement of oscillating angle in any defined cycle while the curve of friction coefficient vs number of testing cycles was continuously plotted. The tribological properties and service life of four kinds of the bearings, i.e, the sampleⅠ-Ⅳ with different self-lubricating composite liners, including three kinds of polytetrafluoroethylene (PTFE) fiber weave/epoxy resin composite liners and a PTFE plastic/copper grid composite liner, were evaluated by testing, and the wear mechanisms of the liner materials were analyzed.展开更多
Two kinds of metal-PTFE multilayer composites, which were composed of a steel backing, a middle layer of sintered porous bronze and a surface layer of polytetrafluoroethylene(PTFE) filled by carbon nanotubes(CNTs)...Two kinds of metal-PTFE multilayer composites, which were composed of a steel backing, a middle layer of sintered porous bronze and a surface layer of polytetrafluoroethylene(PTFE) filled by carbon nanotubes(CNTs) or not, were prepared. The wear properties of metal-PTFE multilayer composites oscillating against 45 carbon steel under dry condition were evaluated on an oscillating wear tester, and the effect of CNTs on wear behaviour of metal-PTFE multilayer composites was studied. The results showed that the worn surface of metal-PTFE multilayer composites was characterized by adhesive wear, abrasive wear and fatigue wear. The CNTs greatly increased the adhesion strength of PTFE in the metal-PTFE composites and thereby greatly reduced puck, ploughing, and fatigue failure of PTFE during wearing. The PTFE filled with CNTs prevented direct contact between the mating surfaces and served as fine self-lubricating film, in which the oscillating wear mechanism of the composites was changed to a slightly adhesive wear. Therefore, the CNTs significantly decreased the weight loss and obviously increased the wear resistance of metal-PTFE multilayer composites.展开更多
Using squeeze-infiltration technique, Mg-9Al-1Zn-0.8Ce composite reinforced by graphite particles and Al2O3 short fibers was fabricated. The reinforcing phases combined closely with the matrix and no agglomeration was...Using squeeze-infiltration technique, Mg-9Al-1Zn-0.8Ce composite reinforced by graphite particles and Al2O3 short fibers was fabricated. The reinforcing phases combined closely with the matrix and no agglomeration was observed. The microstructure, hardness and wear property of the composites with the graphite content of 5%, 10%, 15% and 20% were investigated, respectively. The results reveal that Ce tends to enrich around the boundaries of graphite particles and Al2O3 short fibers, and forms Al3Ce phase. When the graphite content increases to 20%, the grain size becomes small. Moreover, with increasing the graphite content, the microhardness of the composites decreases but the wear resistance increases. The graphite which works as lubricant during dry sliding process decreases the wear loss. At low load, the wear mechanism of the composite is mainly abrasive wear and oxidation wear; at high load, except that the composite with 20% graphite is still with abrasive wear and oxidation wear, the wear mechanism of other composites changes to delamination wear.展开更多
A novel approach to produce an intermetallic composite coating was put forward.The microstructure,microhardness,and dry-sliding wear behavior of the composite coating were investigated using X-ray diffraction (XRD),...A novel approach to produce an intermetallic composite coating was put forward.The microstructure,microhardness,and dry-sliding wear behavior of the composite coating were investigated using X-ray diffraction (XRD),scanning electron microscopy (SEM),energy dispersive spectrum (EDS) analysis,microhardness test,and ball-on-disc wear experiment.XRD results indicate that some new phases FeAl,Fe0.23Ni0.77Al,and Ni3Al exit in the composite coating with the Al2O3 addition.SEM results show that the coating is bonded with carbon steel metallurgically and exhibits typical rapid directional solidification structures.The Cr7C3 carbide and intermetallic compounds co-reinforced composite coating has a high average hardness and exhibits an excellent wear resistance under dry-sliding wear test compared with the Cr7C3 carbide-reinforced composite coating.The formation mechanism of the intermetallic compounds was also investigated.展开更多
Pure copper plates were coated by Ni-TiC dipulse current plating method. The effects of adding different concentration(ranging from 0.5 g/L to 3.0 g/L) of attapulgite nano particles to the plating bath on the surfac...Pure copper plates were coated by Ni-TiC dipulse current plating method. The effects of adding different concentration(ranging from 0.5 g/L to 3.0 g/L) of attapulgite nano particles to the plating bath on the surface morphology, wear resistance, and oxidation resistance of Ni/TiC/Attapulgite nano-composite coatings were investigated. The experimental results show that the composite coating is flat and compact with adding 3.0 g/L in the bath, and the coating preferred orientation is changed from the planes(111) to(200). The coefficient of the composite coatings decreases from 0.68 to 0.18 with increasing content of attapulgite in the bath, a mixed mode of adhesive-abrasive wear occurs for all coatings, and the wear mechanism shows a transition from adhesive-abrasive to predominantly abrasive wear mechanism when the concentration of attapulgite is beyond 1.5 g/L in electrolyte. The oxidation resistance of composite coatings is the best prepared when adding attapulgite particles at 0.5 g/L in the bath, the oxide mainly consists of a NiO phase by X-ray analysis.展开更多
The objective of this work is to study the synthesis of copper-alumina nanocomposites using the coprecipitation process and hot-pressing method, and investigate their mechanical properties. The effects of calcination ...The objective of this work is to study the synthesis of copper-alumina nanocomposites using the coprecipitation process and hot-pressing method, and investigate their mechanical properties. The effects of calcination temperature on the average size of composite particles and chemical composition after calcination were also analyzed. The sintering parameters including sintering temperature, hot pressure and packing time were optimized to fabricate the alumina nanoparticles reinforced copper matrix composites(CMCs). The density, microhardness and tribological properties of the CMCs reinforced with 1 wt%, 2 wt%, 3 wt%, 4 wt% and 5 wt% of alumina nanoparticles were investigated correspondingly. The results showed that the optimum preparation parameters for the CMCs were 900 ℃ of hot pressing temperature, 27.5 MPa of hot pressure and 2 hrs of packing time. The CMC reinforced with 2 wt% of alumina nanoparticles had the lowest wear rate, with the relative wear resistance of 3.13.展开更多
Surface functionalization of carbon nanofibers(CNFs) was carried out, i e, CNFs were firstly oxidized and then the surface was silanized by 3-Aminopropyltriethoxysilane(APTES) via an assembly method. A new kind of...Surface functionalization of carbon nanofibers(CNFs) was carried out, i e, CNFs were firstly oxidized and then the surface was silanized by 3-Aminopropyltriethoxysilane(APTES) via an assembly method. A new kind of high wear resistance s-CNFs/epoxy composite was fabricated by in-situ reaction. FTIR spectroscopy was used to detect the changes of the functional groups produced by silane on the surface of CNFs. The tribological properties and microstructures of modified and unmodified CNFs/epoxy composites were studied, respectively. The expremental results indicate that APTES is covalently linked to the surface of CNFs successfully and improves the dispersion of CNF in epoxy matrix. The friction coefficients and the wear rates of s-CNFs/epoxy composites are evidently lower than those of u-CNFs/epoxy composites under the same loads. Investigations also indicate that abrasive wear is the main wear mechanism for u-CNFs/epoxy composite, with slight adhesive wear for s-CNFs/epoxy composite under the same sliding wear condition.展开更多
The friction and wear behavior of resin/graphite composite has been investigated using a pin-on-disc configuration under dry sliding condition. The results showed that the resin/graphite composite exhibited much bette...The friction and wear behavior of resin/graphite composite has been investigated using a pin-on-disc configuration under dry sliding condition. The results showed that the resin/graphite composite exhibited much better mechanical and tribological properties compared with the unimpregnated graphite. The friction coefficient was reduced by addition of furan resin, which could also prevent the'dusting' wear at loads more than 15 MPa. The steady and lubricated transfer film was easily formed on the counterpart surface due to the interaction of furan resin and wear debris of graphite, which was useful to reduce the wear rate of the resin/graphite composite. The composite is highly promising for mechanical sealing application and can be used at high load for long time sliding.展开更多
Theempiricalelectrontheory of solidsand molecules( EET) and theimproved TFDtheory wereapplied tocalculatethe phasestructurefactorsand interfaceconjunction factorsofcom mon alloying elementsincastiron. Akind of Si- M...Theempiricalelectrontheory of solidsand molecules( EET) and theimproved TFDtheory wereapplied tocalculatethe phasestructurefactorsand interfaceconjunction factorsofcom mon alloying elementsincastiron. Akind of Si- Mo- Cu ductileiron with rareearth Mg asnodularizer was designed accordingtothese valenceelectron structure parameters. Actual applicationtestsshow thatthelongevity of thisiron is 1.5 timesof thatof high manganesesteel. This accordance of theoretical results and actual effectsshows the composition design methodcan beused in othercastiron research.展开更多
Sliding friction and wear experiments using Cu-La2O3-graphite composites against Cu-5 wt.%Ag alloy ring were conducted at a constant sliding speed of 10 m/s, a current density of 10 A/cm2 and a load of 2.5 N/cm2. Thes...Sliding friction and wear experiments using Cu-La2O3-graphite composites against Cu-5 wt.%Ag alloy ring were conducted at a constant sliding speed of 10 m/s, a current density of 10 A/cm2 and a load of 2.5 N/cm2. These composites with different La2O3 and graphite contents were fabricated by hot-pressing. Physical and mechanical properties of the composites were examined. Morphologies of the worn surface of composites were observed using optical microscopy. X-ray photoelectron spectroscopy spectra were used to study compositions of the lubricating film. The results showed that with the increasing addition of La2O3, hardness, flexural strength and electrical resistivity increased, but the relative density dropped. The friction coefficient increased with the increasing addition of La2O3. Composite containing 3 vol.% of La2O3 and 37 vol.% of graphite showed the best wear resistance. The main wear mechanisms of composites were abrasive wear, oxidative wear and adhesive wear.展开更多
The results of the surface modification of magnesium alloys by plasma electrolytic oxidation(PEO) and subsequent treatment in suspension of the superdispersed polytetrafluoroethylene(SPTFE) or telomeric solution o...The results of the surface modification of magnesium alloys by plasma electrolytic oxidation(PEO) and subsequent treatment in suspension of the superdispersed polytetrafluoroethylene(SPTFE) or telomeric solution of tetrafluoroethylene(TFE) are presented. Composite coatings have been obtained by dipping with subsequent heat treatment. Electrochemical, tribological properties and wettability of protective composite coatings have been investigated. Composite coatings formed on PEO-layer by fourfold treatment of samples in SPTFE suspension possess best protective properties. The obtained coatings decrease the corrosion current density(5.4 × 10^(-11) A cm^(-2)) and wear(7.6 × 10^(-7)mm^3(Nm)^(-1)), and increase the polarisation resistance(1.7 × 10~9 cm^2) and impedance modulus(1.9 × 10~9 cm^2) by orders of magnitude in comparison with unprotected magnesium alloy and base PEO-coating. The highest value of contact angle(CA) has been obtained for coatings with triple application in telomeric solution. CA for such composite coatings attains(171 ± 2)?, as the result of multimodal roughness of the composite coating's surface.展开更多
文摘A test method based on the condition simulation and a friction and wear test machine featuring in oscillatory movement were set up for self-lubricating spherical plain bearings (SPB). In the machine the condition parameters such as load, angle and frequency of oscillation and number of test cycles can be properly controlled. The data relating to the tribological properties of the bearing, in terms of friction coefficient, linear wear amount, temperature near friction surface and applied load, can be monitored and recorded simultaneously during test process by a computerized measuring system of the machine. Efforts were made to improve the measurement technology of the friction coefficient in oscillating motion. In result, a well-designed bearing torque mechanism was developed, which could reveal the relation between the friction coefficient and the displacement of oscillating angle in any defined cycle while the curve of friction coefficient vs number of testing cycles was continuously plotted. The tribological properties and service life of four kinds of the bearings, i.e, the sampleⅠ-Ⅳ with different self-lubricating composite liners, including three kinds of polytetrafluoroethylene (PTFE) fiber weave/epoxy resin composite liners and a PTFE plastic/copper grid composite liner, were evaluated by testing, and the wear mechanisms of the liner materials were analyzed.
基金Funded by the National Natural Science Foundation of China(No.11272117)
文摘Two kinds of metal-PTFE multilayer composites, which were composed of a steel backing, a middle layer of sintered porous bronze and a surface layer of polytetrafluoroethylene(PTFE) filled by carbon nanotubes(CNTs) or not, were prepared. The wear properties of metal-PTFE multilayer composites oscillating against 45 carbon steel under dry condition were evaluated on an oscillating wear tester, and the effect of CNTs on wear behaviour of metal-PTFE multilayer composites was studied. The results showed that the worn surface of metal-PTFE multilayer composites was characterized by adhesive wear, abrasive wear and fatigue wear. The CNTs greatly increased the adhesion strength of PTFE in the metal-PTFE composites and thereby greatly reduced puck, ploughing, and fatigue failure of PTFE during wearing. The PTFE filled with CNTs prevented direct contact between the mating surfaces and served as fine self-lubricating film, in which the oscillating wear mechanism of the composites was changed to a slightly adhesive wear. Therefore, the CNTs significantly decreased the weight loss and obviously increased the wear resistance of metal-PTFE multilayer composites.
基金Project(2006BAE04B04-1) supported by the Special Task Document of National Science and Technology Program of ChinaProject(20060308) supported by Science and Technology Development Program of Jilin Province, ChinaProject supported by "985 Project" of Jilin University, China
文摘Using squeeze-infiltration technique, Mg-9Al-1Zn-0.8Ce composite reinforced by graphite particles and Al2O3 short fibers was fabricated. The reinforcing phases combined closely with the matrix and no agglomeration was observed. The microstructure, hardness and wear property of the composites with the graphite content of 5%, 10%, 15% and 20% were investigated, respectively. The results reveal that Ce tends to enrich around the boundaries of graphite particles and Al2O3 short fibers, and forms Al3Ce phase. When the graphite content increases to 20%, the grain size becomes small. Moreover, with increasing the graphite content, the microhardness of the composites decreases but the wear resistance increases. The graphite which works as lubricant during dry sliding process decreases the wear loss. At low load, the wear mechanism of the composite is mainly abrasive wear and oxidation wear; at high load, except that the composite with 20% graphite is still with abrasive wear and oxidation wear, the wear mechanism of other composites changes to delamination wear.
文摘A novel approach to produce an intermetallic composite coating was put forward.The microstructure,microhardness,and dry-sliding wear behavior of the composite coating were investigated using X-ray diffraction (XRD),scanning electron microscopy (SEM),energy dispersive spectrum (EDS) analysis,microhardness test,and ball-on-disc wear experiment.XRD results indicate that some new phases FeAl,Fe0.23Ni0.77Al,and Ni3Al exit in the composite coating with the Al2O3 addition.SEM results show that the coating is bonded with carbon steel metallurgically and exhibits typical rapid directional solidification structures.The Cr7C3 carbide and intermetallic compounds co-reinforced composite coating has a high average hardness and exhibits an excellent wear resistance under dry-sliding wear test compared with the Cr7C3 carbide-reinforced composite coating.The formation mechanism of the intermetallic compounds was also investigated.
基金Founded by the National Natural Youth Science Fundation of China(51301086)the Scientific Research Fund of Nanjing Institute of Technology Doctoral(N20130222 and CKJB201205)the Nanjing Institute of Technology,China
文摘Pure copper plates were coated by Ni-TiC dipulse current plating method. The effects of adding different concentration(ranging from 0.5 g/L to 3.0 g/L) of attapulgite nano particles to the plating bath on the surface morphology, wear resistance, and oxidation resistance of Ni/TiC/Attapulgite nano-composite coatings were investigated. The experimental results show that the composite coating is flat and compact with adding 3.0 g/L in the bath, and the coating preferred orientation is changed from the planes(111) to(200). The coefficient of the composite coatings decreases from 0.68 to 0.18 with increasing content of attapulgite in the bath, a mixed mode of adhesive-abrasive wear occurs for all coatings, and the wear mechanism shows a transition from adhesive-abrasive to predominantly abrasive wear mechanism when the concentration of attapulgite is beyond 1.5 g/L in electrolyte. The oxidation resistance of composite coatings is the best prepared when adding attapulgite particles at 0.5 g/L in the bath, the oxide mainly consists of a NiO phase by X-ray analysis.
基金Funded by Jiangsu Innovation Program for Graduate EducationFundamental Research Funds for the Central Universities(No.KYLX_0258)+1 种基金Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology(No.ASMA201401)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The objective of this work is to study the synthesis of copper-alumina nanocomposites using the coprecipitation process and hot-pressing method, and investigate their mechanical properties. The effects of calcination temperature on the average size of composite particles and chemical composition after calcination were also analyzed. The sintering parameters including sintering temperature, hot pressure and packing time were optimized to fabricate the alumina nanoparticles reinforced copper matrix composites(CMCs). The density, microhardness and tribological properties of the CMCs reinforced with 1 wt%, 2 wt%, 3 wt%, 4 wt% and 5 wt% of alumina nanoparticles were investigated correspondingly. The results showed that the optimum preparation parameters for the CMCs were 900 ℃ of hot pressing temperature, 27.5 MPa of hot pressure and 2 hrs of packing time. The CMC reinforced with 2 wt% of alumina nanoparticles had the lowest wear rate, with the relative wear resistance of 3.13.
基金Funded by the National Young Top Talents Plan of China(2013042)the National Science Foundation of China(21676052,21606042)+1 种基金the Science Foundation for Distinguished Young Scholars of Heilongjiang Province(JC201403)the Natural Science Foundation of Heilongjiang Province(E2015034)
文摘Surface functionalization of carbon nanofibers(CNFs) was carried out, i e, CNFs were firstly oxidized and then the surface was silanized by 3-Aminopropyltriethoxysilane(APTES) via an assembly method. A new kind of high wear resistance s-CNFs/epoxy composite was fabricated by in-situ reaction. FTIR spectroscopy was used to detect the changes of the functional groups produced by silane on the surface of CNFs. The tribological properties and microstructures of modified and unmodified CNFs/epoxy composites were studied, respectively. The expremental results indicate that APTES is covalently linked to the surface of CNFs successfully and improves the dispersion of CNF in epoxy matrix. The friction coefficients and the wear rates of s-CNFs/epoxy composites are evidently lower than those of u-CNFs/epoxy composites under the same loads. Investigations also indicate that abrasive wear is the main wear mechanism for u-CNFs/epoxy composite, with slight adhesive wear for s-CNFs/epoxy composite under the same sliding wear condition.
文摘The friction and wear behavior of resin/graphite composite has been investigated using a pin-on-disc configuration under dry sliding condition. The results showed that the resin/graphite composite exhibited much better mechanical and tribological properties compared with the unimpregnated graphite. The friction coefficient was reduced by addition of furan resin, which could also prevent the'dusting' wear at loads more than 15 MPa. The steady and lubricated transfer film was easily formed on the counterpart surface due to the interaction of furan resin and wear debris of graphite, which was useful to reduce the wear rate of the resin/graphite composite. The composite is highly promising for mechanical sealing application and can be used at high load for long time sliding.
文摘Theempiricalelectrontheory of solidsand molecules( EET) and theimproved TFDtheory wereapplied tocalculatethe phasestructurefactorsand interfaceconjunction factorsofcom mon alloying elementsincastiron. Akind of Si- Mo- Cu ductileiron with rareearth Mg asnodularizer was designed accordingtothese valenceelectron structure parameters. Actual applicationtestsshow thatthelongevity of thisiron is 1.5 timesof thatof high manganesesteel. This accordance of theoretical results and actual effectsshows the composition design methodcan beused in othercastiron research.
基金Project supported by the Major Research Program of the National Natural Science Foundation of China(91026018)the Doctoral Fund of Ministry of Education of China(2011011110015)the Shanghai City special artificial micro materials and Technology Key Laboratory Open Fund(ammt2013A-7)
文摘Sliding friction and wear experiments using Cu-La2O3-graphite composites against Cu-5 wt.%Ag alloy ring were conducted at a constant sliding speed of 10 m/s, a current density of 10 A/cm2 and a load of 2.5 N/cm2. These composites with different La2O3 and graphite contents were fabricated by hot-pressing. Physical and mechanical properties of the composites were examined. Morphologies of the worn surface of composites were observed using optical microscopy. X-ray photoelectron spectroscopy spectra were used to study compositions of the lubricating film. The results showed that with the increasing addition of La2O3, hardness, flexural strength and electrical resistivity increased, but the relative density dropped. The friction coefficient increased with the increasing addition of La2O3. Composite containing 3 vol.% of La2O3 and 37 vol.% of graphite showed the best wear resistance. The main wear mechanisms of composites were abrasive wear, oxidative wear and adhesive wear.
基金supported by the Russian Science Foundation (No. 14-33-00009)the Government of Russian Federation (Federal Agency of Scientific Organizations), investigations of thermal stability of TFE telomeres and microscopic investigations were supported out by support of Genzo Shimadzu Scholarship
文摘The results of the surface modification of magnesium alloys by plasma electrolytic oxidation(PEO) and subsequent treatment in suspension of the superdispersed polytetrafluoroethylene(SPTFE) or telomeric solution of tetrafluoroethylene(TFE) are presented. Composite coatings have been obtained by dipping with subsequent heat treatment. Electrochemical, tribological properties and wettability of protective composite coatings have been investigated. Composite coatings formed on PEO-layer by fourfold treatment of samples in SPTFE suspension possess best protective properties. The obtained coatings decrease the corrosion current density(5.4 × 10^(-11) A cm^(-2)) and wear(7.6 × 10^(-7)mm^3(Nm)^(-1)), and increase the polarisation resistance(1.7 × 10~9 cm^2) and impedance modulus(1.9 × 10~9 cm^2) by orders of magnitude in comparison with unprotected magnesium alloy and base PEO-coating. The highest value of contact angle(CA) has been obtained for coatings with triple application in telomeric solution. CA for such composite coatings attains(171 ± 2)?, as the result of multimodal roughness of the composite coating's surface.