期刊文献+
共找到177篇文章
< 1 2 9 >
每页显示 20 50 100
MEASUREMENT AND INFLUENCE FACTOR'S ANALYSING OF INTERFACIAL STRENGTH OF COMPOSITES 被引量:1
1
作者 Wang Lingsen Liu Ruoyu +1 位作者 Zang Jinsen Fan Yi (Research Institute of Powder Metallurgy, Central South University of Technology, Changsha 410083) 《中国有色金属学会会刊:英文版》 CSCD 1996年第3期74-78,共5页
MEASUREMENTANDINFLUENCEFACTOR'SANALYSINGOFINTERFACIALSTRENGTHOFCOMPOSITES¥WangLingsen;LiuRuoyu;ZangJinsen;Fa... MEASUREMENTANDINFLUENCEFACTOR'SANALYSINGOFINTERFACIALSTRENGTHOFCOMPOSITES¥WangLingsen;LiuRuoyu;ZangJinsen;FanYi(ResearchInsti... 展开更多
关键词 composites interfacial strength SIC FIBER
下载PDF
INFLUENCE OF INTERFACIAL STRENGTH ON THE FRACTURE TOUGHNESS OF GLASS-CERAMIC MATRIX COMPOSITEST
2
作者 Wang Lingsen Liu Ruoyu +1 位作者 Zang Jinsen Fan Yi(PowderMetallurgy Research institute, Central South University ofTechnology, Changsha 410083, China) 《Journal of Central South University》 SCIE EI CAS 1997年第1期1-4,共4页
Nine kinds of glass-ceramic matrix composites with different compositions and inter facial strength(L) were prepared. The influence of Ti on the fracture toughness (K1c.) of composites was studied. It was discoved tha... Nine kinds of glass-ceramic matrix composites with different compositions and inter facial strength(L) were prepared. The influence of Ti on the fracture toughness (K1c.) of composites was studied. It was discoved that, for the system no chemical reaction taking place at the interface, K1c. increased proportionallywith ts increasing at the first stage, then decreased when ts reached a certain value. According to this result,a model of relationship between L, thermal mismatch (Δαr) and K1c was built up. If a chemical reaction tookplace and a new phase was formed in the interface, the K1c. of composite was effected by the combination ofrs, chemical bonding, radial inter facial stress and other factors. 展开更多
关键词 COMPOSITE interfacial strength FRACTURE TOUGHNESS
下载PDF
EFFECT OF INTERFACIAL THERMAL MISMATCH ON INTERFACIAL STRENGTH OF COMPOSITES
3
作者 Liu, Ruoyu Wang, Lingsen +1 位作者 Zhang, Jinsheng Fan, Yi 《中国有色金属学会会刊:英文版》 EI CSCD 1997年第3期76-80,共5页
EFFECTOFINTERFACIALTHERMALMISMATCHONINTERFACIALSTRENGTHOFCOMPOSITES①LiuRuoyuBeijingInstituteofAeronauticalMa... EFFECTOFINTERFACIALTHERMALMISMATCHONINTERFACIALSTRENGTHOFCOMPOSITES①LiuRuoyuBeijingInstituteofAeronauticalMaterials,Beijng100... 展开更多
关键词 COMPOSITE interfacial THERMAL MISMATCH interfacial strength
下载PDF
Improvement of Bending Strength of Carbon Fiber/Thermoplastic Epoxy Composites <br/>—Effects of Molecular Weight of Epoxy on Carbon Fiber/Matrix Interfacial Strength and Connection of Cracks in Matrix
4
作者 Hironori Nishida Kazuya Okubo +1 位作者 Toru Fujii Valter Carvelli 《Open Journal of Composite Materials》 2017年第4期207-217,共11页
The bending strength of carbon?fiber/thermoplastic epoxy composites?(CF/TP-EP Compo.)?had?bi-linear increasewith increase of weight-average molecular weight (Mw) of matrix. The transition in the bending strength appea... The bending strength of carbon?fiber/thermoplastic epoxy composites?(CF/TP-EP Compo.)?had?bi-linear increasewith increase of weight-average molecular weight (Mw) of matrix. The transition in the bending strength appeared at around 55k of Mw (“k”?means 103). SEM observation of fractured surface of CF/TP-EP Compo. showed that the fracture mode changed from interfacial failure to fiber breakage dominated failure. The smooth surface of carbon fibers appeared at lower Mw than 55k while some resin remained on the fibers indicating good adhesion between carbon fiber and matrix at higher Mw than 55k. The interfacial shear strength between carbon fiber and matrix bi-linearly increased with an increase of Mw similarly to the bending strength of the composite, measured by the micro droplet test. The dynamic loss tanδ?of the matrix measured at 2?Hz also showed a bi-linear relationship with respect to Mw having a knee point at Mw = 55k. The connection probability of two cracks introduced on?each side of specimens also confirmed that the interfacial strength between carbon fiber and matrix is the key for the mechanical performance of CF/TP-EP Compo. in bending. 展开更多
关键词 THERMOPLASTIC EPOXY composites Weight-Average Molecular WEIGHT interfacial Shear strength CRACK Propagation CRACK Connecting Probability
下载PDF
Effects of Heating Temperature on Interfacial Microstructure and Compressive Strength of Brazed CBN-AlN Composite Abrasive Grits 被引量:4
5
作者 丁文锋 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第6期952-956,共5页
CBN-AlN composite abrasive grits and AISI 1045 steel were brazed using Ag-Cu-Ti active filler alloy by heating up to the temperature of 890,900 and 920 ℃,respectively,and then held at the temperature for 8 min.Optica... CBN-AlN composite abrasive grits and AISI 1045 steel were brazed using Ag-Cu-Ti active filler alloy by heating up to the temperature of 890,900 and 920 ℃,respectively,and then held at the temperature for 8 min.Optical microscope,scanning electron microscope and X-ray diffraction equipment were utilized to study the effects of heating temperature on the microstructure of the joining interface.The compressive strength of the brazed composite grits was also measured.The experimental results show that the atoms of Ti,Al,B and N have preferentially penetrated towards the joining interface of composite grits and filler alloy.The compounds of Ti-nitride,Ti-borides and Ti3AlN were formed in the reaction layer.Degradation effect was not made on the compressive strength of the CBN-AlN composite grits when the brazing process was carried out in the temperature range of 890-920 ℃. 展开更多
关键词 CBN-AlN composite grits interfacial microstructure compressive strength Ag-Cu-Ti filler alloy
下载PDF
Improving Strength of Carbon Fiber Grafted Carbon Nanotube Reinforced Thermoplastic Composites by 3D-Printed Molding
6
作者 Ruonan Wang Haihong Wu +2 位作者 Ziyue Guo Chuntai Liu Changyu Shen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第2期71-79,共9页
To improve the strength of carbon fiber(CF) reinforced Polycaprolactam(PA6) composites, controlled amounts of carbon nanotubes(CNTs) were grafted onto the surface of CF to prepare the hybrid reinforcement(HR). We used... To improve the strength of carbon fiber(CF) reinforced Polycaprolactam(PA6) composites, controlled amounts of carbon nanotubes(CNTs) were grafted onto the surface of CF to prepare the hybrid reinforcement(HR). We used HR to fabricate laminate and H-sample to test the interfacial bonding strength(IBS) of the composites by means of a novel process called three-dimensional printed molding(3 D-PM). By using the melt drop printing method, we measured the contact angles between PA6 and CF(without sizing) and between PA6 and HR. The IBS and the mechanical properties of the composites were obtained by the tensile test. The experimental result indicated that CF grafted by 0.25% weight fraction of CNT or more could develop a special microstructure similar to the micro-pits on the surface of CF, which improved the wettability of CF and PA6 due to the increased surface area and the roughness of CF. When the weight fraction of CNT reached 0.25%, the IBS increased by 41.8%, the tensile strength by 130%, and the interfacial shear strength(IFSS) by 238%. The interfacial dimple fracture was observed by Scanning Electron Microscope(SEM), which revealed that the composites were able to absorb more deforming energy before fracture. The modified surface microstructure of CF would prevent crack propagation at the interface and increase the mechanical properties of thermoplastic composites(TPCs). 展开更多
关键词 THERMOPLASTIC composites interfacial bonding strength interfacial shear strength 3D-printed MOLDING
下载PDF
Study on Single-fiber Pull-out Method for Evaluating Interfacial Strength in CFRP
7
作者 Yudong, H. Zhiqian, Zh. +1 位作者 Lixun, L. Qiwei, L. 《High Technology Letters》 EI CAS 1995年第1期105-108,共4页
Single-fiber pull-out testing (SFPOT) methods are frequently used to evaluate the interfacial adhesion between fiber and matrix in composite materials. To make such pull-out measurements, however, the length of embedd... Single-fiber pull-out testing (SFPOT) methods are frequently used to evaluate the interfacial adhesion between fiber and matrix in composite materials. To make such pull-out measurements, however, the length of embedded fiber must be small enough so that the fiber does not break before it is pulled freely. This is difficult to achieve by conventional methods with fibers of small diameter, such as the carbon fibers. In this paper, a fiber pull-out experiment is described. Specialized apparatus in our laboratory, as well as this technique for sample preparation are discussed in detail. The interfacial shear strength of carbon fiber/resin matrix composites is analyzed quantitatively by using the finite-element method. The SFPOT system has been proved to be an available means for the study of interfacial properties for carbon fiber/resin matrix composites. 展开更多
关键词 Carbon fiber Composite materials interfacial shear strength Single-fiber pull-out
下载PDF
The Determination of Interfacial Shear Strength in Short Fiber Reinforced Poly Ethylene Terephthalate by Kelly-Tyson Theory
8
作者 Wiranphat Thodsaratpreeyakul Putinun Uawongsuwan +2 位作者 Akio Kataoka Takanori Negoro Hiroyuki Hamada 《Open Journal of Composite Materials》 2017年第4期218-226,共9页
The interfacial shear strength value measuring by the modified Kelly-Tyson equation method was studied the measurement accuracy. The measuring accuracy by using the modified Kelly-Tyson equation method is compared to ... The interfacial shear strength value measuring by the modified Kelly-Tyson equation method was studied the measurement accuracy. The measuring accuracy by using the modified Kelly-Tyson equation method is compared to the nano-indentation testing method. The results and an influential factor are described. An error in the modified Kelly-Tyson equation is verified to avoid the incorrect measurement when the interfacial shear strength was measured by the modified Kelly-Tyson equation. To study the different interfacial shear strength behavior, short fiber reinforced PET composites were fabricated. In this study, an advance fabricating technique for short fiber reinforced composite as direct fiber feeding process is conducted to fabricate GF/recycled PET for studying the interfacial shear strength. The result indicates that the modified Kelly-Tyson equation method accurately provides the accurate interfacial shear strength value, if it is conducted with the sample without a horizontally aligned fiber. So the high fiber loading content sample should be avoided to get the more accuracy result. The large horizontally aligned fiber area into specimens extremely resulted in the incorrect measurement of the interfacial shear strength value by the modified Kelly-Tyson equation method. The fiber agglomeration factor and the sensitively horizontally aligned fiber area must be considered its influence on the measuring for improving the equation effectiveness. 展开更多
关键词 interfacial Shear strength Kelly-Tyson composites POLY ETHYLENE TEREPHTHALATE Injection MOLDING
下载PDF
The interface structure and property of magnesium matrix composites:A review
9
作者 Hongwei Xiong Lidong Gu +7 位作者 Jingya Wang Liping Zhou Tao Ying Shiwei Wang Haitao Zhou Jianbo Li Yang Gao Xiaoqin Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2595-2623,共29页
Magnesium matrix composites have garnered significant attention in recent years owing to their exceptional lightweight properties and notable potential in various engineering applications.The interface generally acts ... Magnesium matrix composites have garnered significant attention in recent years owing to their exceptional lightweight properties and notable potential in various engineering applications.The interface generally acts as a“bridge”between the matrix and reinforcement,playing crucial roles in critical processes such as load transfer,failure behavior,and carrier transport.A deep understanding of the interfacial structures,properties,and effects holds paramount significance in the study of composites.This paper presents a comprehensive review of prior researches related to the interface of Mg matrix composites.Firstly,the different interfacial structures and interaction mechanisms encompassing mechanical,physical,and chemical bonding are introduced.Subsequently,the interfacial mechanical properties and their influence on the overall properties are discussed.Finally,the paper addresses diverse interface modification methods including matrix alloying and reinforcement surface treatment. 展开更多
关键词 Mg matrix composites INTERFACE interfacial strength interfacial modification
下载PDF
Effects of Nickel Distribution on the Strengthening and Toughening of Alumina Ceramics 被引量:3
10
作者 Mohamed.M.El-Sayed Seleman 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第5期723-728,共6页
Three types of composite materials were designed and fabricated by hot pressing powder blends of alumina with 20 vol. pct nickel particles. The composites differ in the shape, size and distribution of the nickel parti... Three types of composite materials were designed and fabricated by hot pressing powder blends of alumina with 20 vol. pct nickel particles. The composites differ in the shape, size and distribution of the nickel particles. Composite microstructures are described and measurements of density, hardness, flexure strength, and fracture toughness are reported. The results showed that the fracture strength of the composite with dispersed nickel particles is higher than the other two composites (network microstructure and mixed microstructure) and the alumina matrix. For all the composites studied, tougher materials than the monolithic alumina were produced. The fracture toughness of the composite with a network microstructure is much higher than that of the other composites. The toughening mechanisms were described based on the observation of the fracture surfaces and the crack-particle interactions. Moreover, the parameters for microstructural tailoring of these materials have been deduced. The toughening of the produced composites was explained in light of the interracial bond strength. 展开更多
关键词 Alumina-nickel composites Nickel morphology interfacial bonding Fracturetoughness Flexure strength
下载PDF
Microstructure and mechanical behavior of Ti/Cu/Ti laminated composites produced by corrugated and flat rolling 被引量:2
11
作者 Zhu-bo LIU Xin-yue WANG +4 位作者 Ming-shuo LIU Yuan-ming LIU Jiang-lin LIU A.V.IGNATOV Tao WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第8期2598-2608,共11页
Ti/Cu/Ti laminated composites were fabricated by corrugated rolling(CR) and flat rolling(FR) method.Microstructure and mechanical properties of CR and FR laminated composites were investigated by scanning electron mic... Ti/Cu/Ti laminated composites were fabricated by corrugated rolling(CR) and flat rolling(FR) method.Microstructure and mechanical properties of CR and FR laminated composites were investigated by scanning electron microscopy, numerical simulation methods, peel and tensile examinations. The effect of CR and FR was comparatively analyzed. The results showed that the CR and FR laminated composites exhibited different effective plastic strain distributions of the Ti layer and Cu layer at the interface. The recrystallization texture, prismatic texture and pyramidal texture were developed in the Ti layer by CR, while the R-Goss texture and shear texture were developed in the Cu layer by CR. The typical deformation texture components were developed in the Ti layer and Cu layer of FR laminated composites. The CR laminated composites had higher bond strength, tensile strength and ductility. 展开更多
关键词 Ti/Cu/Ti laminated composites corrugated rolling flat rolling bond strength interfacial microstructure finite element analysis
下载PDF
Experimental and Numerical Study on Mechanical Properties of Z-pins Reinforced Composites Adhesively Bonded Single-Lap Joints 被引量:1
12
作者 Yinhuan Yang Manfeng Gong +1 位作者 Xiaoqun Xia Linzhi Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第4期365-378,共14页
The mechanical properties of Z-pins reinforced composites adhesively bonded single-lap joints(SLJs)under un-directional tension loading are investigated by experimental and numerical methods.Three kinds of joint confi... The mechanical properties of Z-pins reinforced composites adhesively bonded single-lap joints(SLJs)under un-directional tension loading are investigated by experimental and numerical methods.Three kinds of joint configurations,including SLJs with three/two rows of Z-pins and“I”array of Z-pins,are investigated by tension test.The failure modes and mechanism of reinforced joints with different Z-pins numbers and alignment are analyzed,and the comparison is performed for the failure strengths of no Z-pins and Z-pins reinforced joints.According to experimental results,failure modes of three kinds of joints are all mixed failure.It turns out that the Z-pins are pulled out ultimately.The strength of joints of more Z-pins at the end of the overlap area is relatively bigger for the joint of the same Z-pins numbers.The strength of joints with Z-pins compared with non Z-pins joints is growing at 16%.Finally,the three-dimensional distribution of interfacial stress in the lap zone of three kinds of Z-pins reinforced joints is simulated,and the numerical results are in good agreement with the experimental results.It is effective that the numerical calculation of stress analysis is verified. 展开更多
关键词 Z-pins reinforced composite single-lap joint(SLJ) failure mode and strength un-directional tension test interfacial stress
下载PDF
Stress Distribution in the Cruciform Specimen under Transverse Tension Stress for SiC/Ti-6Al-4V Composites 被引量:2
13
作者 Yang Yanqing Yuan Meini Li Jiankang Huang Bin Luo Xian 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2009年第A03期33-36,共4页
The cruciform specimen was selected to obtain the transverse tensile behavior of SiC fiber reinforced titanium matrix composites. Moreover, the means of combining the unilaterally coupled finite element method with th... The cruciform specimen was selected to obtain the transverse tensile behavior of SiC fiber reinforced titanium matrix composites. Moreover, the means of combining the unilaterally coupled finite element method with the transverse tensile test was developed to evaluate the interfacial normal bond strength of composites. The results showed that the initial non-linearity in the transverse stress-strain curve of SiC/Ti-6Al-4V occurs at the stress of 350 MPa. The means of combining the unilaterally coupled finite element method with the transverse tensile test is an effective method to predict the interfacial normal bond strength of composites. In addition, the interface failure mechanism of composites was analyzed in detail. 展开更多
关键词 钛基复合材料 物理性能 应力 有限元分析
下载PDF
Laser-induced combustion joining of C_(f)/Al composites and TC4 alloy
14
作者 Guang-jie FENG Zhuo-ran LI +2 位作者 Peng HE Lei SHEN Zhi ZHOU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第2期461-471,共11页
The C_(f)/Al composites were joined to the TC4 alloy via the laser-induced combustion joining method.The exothermic reaction of the interlayer provided the required energy for the joining process.By combining the theo... The C_(f)/Al composites were joined to the TC4 alloy via the laser-induced combustion joining method.The exothermic reaction of the interlayer provided the required energy for the joining process.By combining the theoretical calculation and experiment,the chemical composition of the Ni−Al−Zr interlayer was designed.The microstructure and mechanical properties of the joint were investigated.The results show that the addition of Zr slightly weakened the combustion reaction of exothermic interlayer but played a key role in the successful joining.Ni−Al−Zr interlayer reacted with substrates,forming a TiAl_(3)layer adjacent to TC4 alloy and NiAl_(3),Ni_(2)Al_(3)layers adjacent to the C_(f)/Al composites.Zr content dominated the microstructure and shear strength of the joint.When the Zr content was 5 wt.%under the joining pressure of 2 MPa,the joint had a maximum shear strength of 19.8 MPa. 展开更多
关键词 C_(f)/Al composites TC4 alloy combustion joining interfacial microstructure shear strength
下载PDF
A Study on the Initial Fracture Behavior of CF/GF Intra-Hybrid Woven Fabric Reinforced Composites
15
作者 Zhilan Xu Asami Nakai +1 位作者 Yuqiu Yang Hamada Hiroyuki 《Open Journal of Composite Materials》 2018年第1期11-27,共17页
In this paper, woven fabrics of glass fiber/carbon fiber intra-hybrid in plain structure were used to fabricate fiber reinforced plastic (FRP) composite by hand lay-up method. The investigation on tensile property was... In this paper, woven fabrics of glass fiber/carbon fiber intra-hybrid in plain structure were used to fabricate fiber reinforced plastic (FRP) composite by hand lay-up method. The investigation on tensile property was carried out on specimens in 7 orientations including 0°/5°/15°/75°/85°/90° in previous works. With the specimen parameters and experimental data, FEM model was built by the software of Marc. By combining the experimental results and finite element analysis, the modulus was simulated and calculated at the first stage. Then interfacial stress of the 0 degree and 90 degree was also calculated. By the initial fracture stress data from experiment as well as the simulation value of interfacial strength of 0 and 90 degree, the initial fracture stress of the off-axial specimens wascalculated and predicted. The result shows that the interfacial strength of the glass fiber bundle is higher than that of the carbon fiber bundle in transverse direction. By using the interfacial strength and according to the Von Mises yielding criterion, the initial fracture stress was predicted, which can be a contribution to the design or predict of the material properties. 展开更多
关键词 Intra-Hybrid Woven Fabric Composite FEM interfacial strength INITIAL Frac-ture
下载PDF
铁尾矿基多固废混凝土抗压性能及微观结构分析
16
作者 张延年 林吉森 +3 位作者 陈昊 刘剑平 程祥 余靖玟 《沈阳工业大学学报》 CAS 北大核心 2024年第2期225-232,共8页
针对铁尾矿堆存困难、综合利用率低和活性低的问题,以铁尾矿钢渣脱硫灰为复合掺合料制备多固废混凝土。通过抗压性能测试,研究复合掺合料掺量、铁尾矿细度对混凝土抗压强度的影响,并利用压汞法(MIP)和背散射电子成像技术(BSE)探究混凝... 针对铁尾矿堆存困难、综合利用率低和活性低的问题,以铁尾矿钢渣脱硫灰为复合掺合料制备多固废混凝土。通过抗压性能测试,研究复合掺合料掺量、铁尾矿细度对混凝土抗压强度的影响,并利用压汞法(MIP)和背散射电子成像技术(BSE)探究混凝土的微观结构。结果表明:复合掺合料的掺入对混凝土早期抗压强度影响较大,掺量小于20%的混凝土28 d抗压强度与无掺合料组抗压强度基本持平,30%掺量的混凝土抗压强度随铁尾矿比表面积的增大而先增大后减小;掺入复合掺合料和减小铁尾矿细度能够改善混凝土孔结构和提高界面过渡区的密实度。 展开更多
关键词 多固废混凝土 铁尾矿 复合掺合料 抗压强度 孔结构 界面过渡区 钢渣 脱硫灰
下载PDF
冲击力下薄壁内衬复合管界面黏结强度效应分析
17
作者 卢召红 徐畅 +1 位作者 彭郑飞 王威 《河南科技》 2024年第6期52-57,共6页
【目的】研究薄壁内衬复合管在受冲击力作用下的界面黏结强度对层间剥离屈曲的影响。【方法】建立薄壁内衬复合管在弹性阶段的非线性分析模型,对薄壁内衬复合管材模态试验与分析模型的分析结果进行对比,验证有限元分析模型可靠性。通过... 【目的】研究薄壁内衬复合管在受冲击力作用下的界面黏结强度对层间剥离屈曲的影响。【方法】建立薄壁内衬复合管在弹性阶段的非线性分析模型,对薄壁内衬复合管材模态试验与分析模型的分析结果进行对比,验证有限元分析模型可靠性。通过改变衬层与原基层管壁间的界面黏结强度,研究复合管在冲击力下的动态特征。【结果】研究结果表明,当冲击荷载较小、管道变形处于弹性阶段时,薄壁内衬复合管的损伤大都集中在层间界面处。界面黏结强度对层间剥离屈曲有较大的影响,随着层间界面黏结强度的增加,外基层管与内衬层的最大等效应力差值减少。此外,外基层管和内衬层的变形协调性能力随着黏结强度增加而增大,径向层间位移减小,增加了复合管的整体性和连续性。【结论】研究结果可为薄壁内衬修复管道设计方法及层间界面效应分析提供参考。 展开更多
关键词 薄壁内衬复合管 界面黏结强度 冲击力 层间剥离
下载PDF
熔体压力对水平双辊铸轧Ti/Al复合板界面结合强度的影响 被引量:2
18
作者 许久健 张焘 +3 位作者 付金禹 许光明 李勇 王昭东 《材料工程》 EI CAS CSCD 北大核心 2024年第7期182-193,共12页
除了铸轧速度和熔体浇铸温度外,铸轧区内的熔体压力也是影响水平双辊铸轧Ti/Al复合板工艺稳定性和界面结合强度的重要因素。本工作在铸轧复合过程中通过调节前箱内熔体的液面高度,获得了在不同铸轧区熔体压力下制备的Ti/Al复合板。通过... 除了铸轧速度和熔体浇铸温度外,铸轧区内的熔体压力也是影响水平双辊铸轧Ti/Al复合板工艺稳定性和界面结合强度的重要因素。本工作在铸轧复合过程中通过调节前箱内熔体的液面高度,获得了在不同铸轧区熔体压力下制备的Ti/Al复合板。通过金相、扫描电镜、显微硬度、室温拉伸实验、T型剥离实验等手段对复合板的显微组织和界面结合性能进行表征和测试。结果表明,当熔体压力较高时,可以生产出充盈饱满、板型良好、结合强度高的复合板,但熔体压力过高会影响铸轧复合过程的稳定性。当熔体压力过低时,熔体的横向流动能力减弱,铸轧区内不能完全被熔体填充满,板材出现热带、褶皱等缺陷,同时,在Ti/Al上出现了部分微孔和微裂缝。在较高熔体压力下,固/液接触距离更长,带材表面与熔体的润湿更加充分,熔体分布更加均匀,固/液扩散更加充分。因此,当熔体压力较高时,复合板具有更高的结合强度,界面结合强度达到20.1 N/mm。 展开更多
关键词 铸轧复合 钛/铝复合板 熔体压力 界面结合强度
下载PDF
移动感应加热异温轧制钛/铝复合板的协调变形和力学性能 被引量:1
19
作者 高勃兴 肖宏 +1 位作者 余超 朱加辉 《中国有色金属学报》 EI CAS CSCD 北大核心 2024年第2期400-411,共12页
提出了一种移动感应加热异温轧制制备钛/铝复合板的方法,应用电磁感应单独加热移动的钛板,与室温铝板轧制复合,实现钛和铝的协调变形,提高了复合板的结合强度。采用ANSYS有限元软件模拟移动感应加热过程中钛板的温度变化过程,确保在轧... 提出了一种移动感应加热异温轧制制备钛/铝复合板的方法,应用电磁感应单独加热移动的钛板,与室温铝板轧制复合,实现钛和铝的协调变形,提高了复合板的结合强度。采用ANSYS有限元软件模拟移动感应加热过程中钛板的温度变化过程,确保在轧辊入口位置时,钛板沿宽度方向温度分布均匀。基于有限元模拟结果确定钛板移动速度和感应加热参数,并进行了移动感应加热和轧制复合实验,研究了不同压下率对于钛/铝复合板协调变形和结合强度的影响。结果表明:随着压下率的增加,钛/铝变形率差值先减小后增大,当轧制压下率为39.4%时,钛/铝轧制变形率基本一致,轧后复合板平直,界面剪切强度最高,达到124.6 MPa,剪切断裂发生在铝基体上。 展开更多
关键词 钛/铝复合板 移动感应加热 异温轧制 剪切强度 协调变形
下载PDF
钛网添加对镁/铝复合板微观组织和力学性能影响研究 被引量:1
20
作者 李达 李健 +8 位作者 冯波 黄念成 冯晓伟 欧家禹 陈焕涛 朱红梅 李建波 郑开宏 潘复生 《精密成形工程》 北大核心 2024年第4期61-70,共10页
目的有效抑制镁/铝复合板界面处金属间化合物的形成。以钛网为中间金属夹层,研究它对镁/铝复合板微观组织和力学性能的影响。方法利用复合轧制技术制备以钛网为中间金属夹层的镁/铝-钛复合板,采用扫描电子显微镜(SEM)、电子背散射衍射仪... 目的有效抑制镁/铝复合板界面处金属间化合物的形成。以钛网为中间金属夹层,研究它对镁/铝复合板微观组织和力学性能的影响。方法利用复合轧制技术制备以钛网为中间金属夹层的镁/铝-钛复合板,采用扫描电子显微镜(SEM)、电子背散射衍射仪(EBSD)、万能试验机等对复合板退火前后的微观组织和力学性能进行表征和分析,系统研究中间层钛网对轧制态和退火态复合板微观组织、织构、拉伸性能、界面结合强度的影响规律。结果中间层钛网均匀分布在镁/铝-钛复合板界面处,钛网的添加能有效抑制复合板退火过程中镁-铝金属间化合物的连续生长,减少金属间化合物的数量。与镁/铝复合板相比,钛网的添加对轧制态和退火态复合板中镁层和铝层的平均晶粒尺寸和织构类型的影响较小。与镁/铝复合板相比,钛网的添加降低了轧制态复合板的界面剪切强度和延伸率,但极大提升了退火态复合板的界面剪切强度、拉伸强度和延伸率。结论中间层钛网的添加可有效减少复合板界面处金属间化合物的数量,提升退火态复合板的综合力学性能。 展开更多
关键词 镁/铝复合板 钛网 微观组织 力学性能 界面结合强度
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部