This paper measured permeability of three-dimension braided preform by radial technology. The results show that principal permeability tensor coincided with their braiding axial direction. The software of one dimensio...This paper measured permeability of three-dimension braided preform by radial technology. The results show that principal permeability tensor coincided with their braiding axial direction. The software of one dimensional flow filling mold was designed using Visual C++ language. Filling time is predicted and validated. The result showed that the filling time of the mold centerline agrees with the prediction value. The filling time of the mould edge is shorter than that of the prediction. An actual plate of 3D braided preform/ modified polyarylacetylene composite is produced according to prediction value and validation analysis.展开更多
The resin-sand mixture was proposed to be used as the surface course,and cement permeable concrete was used as the base course;such two kinds of materials were combined to prepare water-permeable brick with a composit...The resin-sand mixture was proposed to be used as the surface course,and cement permeable concrete was used as the base course;such two kinds of materials were combined to prepare water-permeable brick with a composite structure.The compressive strength,flexural strength,and permeability were studied by using adjusting the contents of carbon fiber,quartz powder,cement,sand,and surfactant.The study shows that the hydrophilicity of the resin-sand mixture can be improved after any amount of resin is replaced by quartz powder;by using the surfactant,the interface energy of the particles can be reduced so that the water permeability of the surface course can be promoted effectively.However,the mechanical properties of the surface course were negatively affected by the surfactant.With the optimal process consideration in the experiments,the properties about compressive strength,flexural strength,and permeability of the composite permeable brick can meet the requirements of the specifications of resin-sand based water permeable brick JGT 376-2012(compressive strength was higher than 35 MPa,the flexural strength exceeded 5.19 MPa,and the average permeability coefficient was higher than 2.3×10^(-2)cm/s).There are no obvious pores on the surface course and only water molecules can pass through it,therefore,the surface of the permeable brick cannot be blocked up by solid substances,and the permeability of such permeable brick can be improved effectively in this way.展开更多
To study the resin flow and the permeability in fabric preforms during the liquid composite molding( LCM) process,influences of stitch and overlay placement styles on the internal flow behavior in-plane and transverse...To study the resin flow and the permeability in fabric preforms during the liquid composite molding( LCM) process,influences of stitch and overlay placement styles on the internal flow behavior in-plane and transverse were investigated. The permeability tests were carried using unidirectional and biaxial noncrimp carbon fabric( NCF) by linear capacitance sensors and ultrasound monitor system. The results indicate that the internal flow behavior and permeability in plane with different stitch and overlay placement styles are significantly different. When flow channels formed by stitches penetrate along the fiber direction,the permeability is high in one direction, which makes the in-plane principle permeabilities K_1 and K_2 significantly different. When there is an angle between the flow channel and fiber direction,the in-plane principle permeabilities on all directions are nearly the same and the flow process is close to isotropy. As to transverse permeability,the exist of flow channels on thickness influences it greatly and it is about 1-2 orders of magnitude lower in unidirectional fabric than that in biaxial NCF.展开更多
文摘This paper measured permeability of three-dimension braided preform by radial technology. The results show that principal permeability tensor coincided with their braiding axial direction. The software of one dimensional flow filling mold was designed using Visual C++ language. Filling time is predicted and validated. The result showed that the filling time of the mold centerline agrees with the prediction value. The filling time of the mould edge is shorter than that of the prediction. An actual plate of 3D braided preform/ modified polyarylacetylene composite is produced according to prediction value and validation analysis.
基金Funded by the Natural Science Foundation of Fujian Province(No.2016J01241)the National Natural Science Foundation of China(No.51608212)the Education Department of Fujian Province(No.JA14024)。
文摘The resin-sand mixture was proposed to be used as the surface course,and cement permeable concrete was used as the base course;such two kinds of materials were combined to prepare water-permeable brick with a composite structure.The compressive strength,flexural strength,and permeability were studied by using adjusting the contents of carbon fiber,quartz powder,cement,sand,and surfactant.The study shows that the hydrophilicity of the resin-sand mixture can be improved after any amount of resin is replaced by quartz powder;by using the surfactant,the interface energy of the particles can be reduced so that the water permeability of the surface course can be promoted effectively.However,the mechanical properties of the surface course were negatively affected by the surfactant.With the optimal process consideration in the experiments,the properties about compressive strength,flexural strength,and permeability of the composite permeable brick can meet the requirements of the specifications of resin-sand based water permeable brick JGT 376-2012(compressive strength was higher than 35 MPa,the flexural strength exceeded 5.19 MPa,and the average permeability coefficient was higher than 2.3×10^(-2)cm/s).There are no obvious pores on the surface course and only water molecules can pass through it,therefore,the surface of the permeable brick cannot be blocked up by solid substances,and the permeability of such permeable brick can be improved effectively in this way.
基金National Natural Science Foundation of China(No.11472077)Shanghai Natural Science Foundation,China(No.13ZR1400500)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.2232015D3-01)Innovation Experiment Programs for University Students,China(Nos.201410255024,201510255118)
文摘To study the resin flow and the permeability in fabric preforms during the liquid composite molding( LCM) process,influences of stitch and overlay placement styles on the internal flow behavior in-plane and transverse were investigated. The permeability tests were carried using unidirectional and biaxial noncrimp carbon fabric( NCF) by linear capacitance sensors and ultrasound monitor system. The results indicate that the internal flow behavior and permeability in plane with different stitch and overlay placement styles are significantly different. When flow channels formed by stitches penetrate along the fiber direction,the permeability is high in one direction, which makes the in-plane principle permeabilities K_1 and K_2 significantly different. When there is an angle between the flow channel and fiber direction,the in-plane principle permeabilities on all directions are nearly the same and the flow process is close to isotropy. As to transverse permeability,the exist of flow channels on thickness influences it greatly and it is about 1-2 orders of magnitude lower in unidirectional fabric than that in biaxial NCF.