In rock engineering,the shear strength of the basalt-concrete bonding interface is a key factor affecting the shear performance of hydroelectric dam foundations,embedded rock piles and rock bolts.In this study,30 sets...In rock engineering,the shear strength of the basalt-concrete bonding interface is a key factor affecting the shear performance of hydroelectric dam foundations,embedded rock piles and rock bolts.In this study,30 sets of in-situ direct shear tests were conducted on the basalt-concrete bond interface in the Baihetan dam area to investigate the shear strength characteristics of the basalt-concrete bonding interface.The bonding interface contains two states,i.e.,the bonding interface is not sheared,termed as se(symbolic meaning see Table 1);the bonding interface is sheared with rupture surface,termed as si.The effects of lithology,Joints structure,rock type grade and concrete compressive strength on the shear strength of the concrete-basalt contact surface were investigated.The test results show that the shear strength of the bonding interface(s_(e)&s_(i))of columnar jointed basalt with concrete is greater than that of the bonding interface(s_(e)&s_(i))of non-columnar jointed one with the same rock type grade.When the rock type grade isⅢ_(2),fcol is 1.22 times higher than fncol and ccol is 1.13 times greater than cncol.The shear strength parameters of the basalt-concrete bonding interface differ significantly for different lithologies.The cohesion of the bonding interface(s_(i))of cryptocrystalline basalt with concrete is 2.05 times higher than that of the bonding interface(s_(i))of breccia lava with concrete under the same rock type grade condition.Rock type grade has a large influence on the shear strength of the non-columnar jointed basalt-concrete bonding interface(s_(e)&s_(i)).cnol increases by 33%when the grade of rock type rises fromⅢ_(1)toⅡ_(1).the rock type grade has a greater effect on bonding interface(s_(i))cohesion than the coefficient of friction.When the rock type grade is reduced fromⅢ_(2)toⅢ_(1),f_(ncol)′increases by 2%and c_(ncol)′improves by 44%.The shear strength of the non-columnar jointed basalt-concrete bonding interface(s_(e)&s_(i))increases with the increase of the compressive strength of concrete.When concrete compressive strength rises from 22.2 to 27.6 MPa,the cohesion increases by 94%.展开更多
3D concrete printing has the potential to replace shotcrete for construction of linings of tunnels in hard rock.The shear strength of the interface between rock and printed concrete is vital,especially at super-early ...3D concrete printing has the potential to replace shotcrete for construction of linings of tunnels in hard rock.The shear strength of the interface between rock and printed concrete is vital,especially at super-early ages.However,traditional methods for testing the shear strength of the interface,e.g.,the direct shear test,are time-consuming and result in a high variability for fast-hardening printed concrete.In this paper,a new fast bond shear test is proposed.Each test can be completed in 1 min,with another 2 min for preparing the next test.The influence of the matrix composition,the age of the printed matrices,and the interface roughness of the artificial rock substrate on the shear strength of the interface was experimentally studied.The tests were conducted at the age of the matrices at the 1st,the 4th,the 8th,the 16th,the 32nd,and the 64th min after its final setting.A dimensionless formula was established to calculate the shear strength,accounting for the age of the printed matrices,the interface roughness,and the shear failure modes.It was validated by comparing the calculated results and the experimental results of one group of samples.展开更多
This paper presents a combined experimental and numerical study on the damage and performance of a soft-hard-soft (SHS) multi-layer cement based composite subjected to blast loading which can be used for protective ...This paper presents a combined experimental and numerical study on the damage and performance of a soft-hard-soft (SHS) multi-layer cement based composite subjected to blast loading which can be used for protective structures and infrastructures to resist extreme loadings, and the composite consists of three layers of construction materials including asphalt concrete (AC) on the top, high strength concrete (HSC) in the middle, and engineered cementitious composites (ECC) at the bottom. To better characterize the material properties under dynamic loading, interface properties of the composite were investigated through direct shear test and also used to validate the interface model. Strain rate effects of the asphalt concrete were also studied and both compressive and tensile dynamic increase factor (DIF) curves were improved based on split Hopkinson pressure bar (SHPB) test. A full-scale field blast test investigated the blast behavior of the composite materials. The numerical model was established by taking into account the strain rate effect of all concrete materials. Furthermore, the interface properties were also considered into the model. The numerical simulation using nonlinear finite element Both the numerical and field blast test indicated that the software LS-DYNA agrees closely with the experimental data SHS composite exhibited high resistance against blast loading展开更多
This paper investigates the design formula for the shear strength at the concrete-to-concrete interface proposed in Eurocode with regard to concrete layers with different strengths. Based upon the results of the study...This paper investigates the design formula for the shear strength at the concrete-to-concrete interface proposed in Eurocode with regard to concrete layers with different strengths. Based upon the results of the study on the applicability of the design formula, push-off test is conducted on specimens with various indented interfaces to evaluate the actual behavior with respect to the surface roughness. The experimental results reveal that the interfacial shear strength increases with higher compressive strength of the concrete layers presenting different strengths and that the shear strength at the indented interface differs by 20% to 50% compared to the value predicted by the design formula. Especially, the shear strength developed between the concrete layers with different strengths appears to be different from the prediction of the design formula as much as the layers present larger difference in their compressive strengths.展开更多
Application of cemented rockfilling to underground mining could not be separated from the corresponding backfill’s shear strength properties. The shear of cemented rockfill(CRF)-rock wall and the shear interaction oc...Application of cemented rockfilling to underground mining could not be separated from the corresponding backfill’s shear strength properties. The shear of cemented rockfill(CRF)-rock wall and the shear interaction occurring within CRFs both have some disadvantageous failure chances. In this study,we tried to investigate the complete shear properties of CRFs using direct shear and triaxial tests of cemented granite rockfill. Large-scale triaxial testing was held to accommodate the large CRF sample.Direct shear testing on the prepared flat and smooth surfaces was assessed with brief conversions and their corrections were used to approximate the shear strength envelopes of CRF joint interfaces. Two types of CRFs with the same aggregate size and distribution but different unconfined compressive strengths(UCSs) due to different mixture designs indicated insignificant differences between their basic friction angles, and also their asperity inclination angles. Nevertheless, investigation between direct shear test and triaxial test showed that the specimen with higher UCS tended to have a slightly lower friction angle but a higher cohesion than the other one.展开更多
基金supported by the National Natural Science Foundation of China Key Projects of International Cooperation and Exchanges(No.42020104006)the National Natural Science Foundation of China(No.41630643)+1 种基金the Fundamental Research Funds for the Central Universities(No.CUGCJ1701)the Scientific Research Project of China Three Gorges Corporation LTD.
文摘In rock engineering,the shear strength of the basalt-concrete bonding interface is a key factor affecting the shear performance of hydroelectric dam foundations,embedded rock piles and rock bolts.In this study,30 sets of in-situ direct shear tests were conducted on the basalt-concrete bond interface in the Baihetan dam area to investigate the shear strength characteristics of the basalt-concrete bonding interface.The bonding interface contains two states,i.e.,the bonding interface is not sheared,termed as se(symbolic meaning see Table 1);the bonding interface is sheared with rupture surface,termed as si.The effects of lithology,Joints structure,rock type grade and concrete compressive strength on the shear strength of the concrete-basalt contact surface were investigated.The test results show that the shear strength of the bonding interface(s_(e)&s_(i))of columnar jointed basalt with concrete is greater than that of the bonding interface(s_(e)&s_(i))of non-columnar jointed one with the same rock type grade.When the rock type grade isⅢ_(2),fcol is 1.22 times higher than fncol and ccol is 1.13 times greater than cncol.The shear strength parameters of the basalt-concrete bonding interface differ significantly for different lithologies.The cohesion of the bonding interface(s_(i))of cryptocrystalline basalt with concrete is 2.05 times higher than that of the bonding interface(s_(i))of breccia lava with concrete under the same rock type grade condition.Rock type grade has a large influence on the shear strength of the non-columnar jointed basalt-concrete bonding interface(s_(e)&s_(i)).cnol increases by 33%when the grade of rock type rises fromⅢ_(1)toⅡ_(1).the rock type grade has a greater effect on bonding interface(s_(i))cohesion than the coefficient of friction.When the rock type grade is reduced fromⅢ_(2)toⅢ_(1),f_(ncol)′increases by 2%and c_(ncol)′improves by 44%.The shear strength of the non-columnar jointed basalt-concrete bonding interface(s_(e)&s_(i))increases with the increase of the compressive strength of concrete.When concrete compressive strength rises from 22.2 to 27.6 MPa,the cohesion increases by 94%.
基金Financial support by the Ministry of Science and Technology of China(No.2021YFE0114100)by the Federal Ministry of Education,Science and Research(BMBWF)of Austria(No.CN11/2021)+5 种基金jointly provided for the project‘Intense Upgrades of the New Austrian Tunnelling Method(NATM)and Demonstration of its Applicability to High-Quality Urban Development’,is gratefully acknowledgedsupported by the Science and Technology Commission of Shanghai Municipality(No.21DZ1203505)the National Natural Science Foundation of China(Grant Nos.51908424 and U1934210)Shanghai Rising-Star Program(No.22QB1405000)Jiangxi Province Department of Transportation Key Engineering Project(No.2021C0008)the financial support provided by the Chinese Scholarship Council(CSC,No.202006260198).
文摘3D concrete printing has the potential to replace shotcrete for construction of linings of tunnels in hard rock.The shear strength of the interface between rock and printed concrete is vital,especially at super-early ages.However,traditional methods for testing the shear strength of the interface,e.g.,the direct shear test,are time-consuming and result in a high variability for fast-hardening printed concrete.In this paper,a new fast bond shear test is proposed.Each test can be completed in 1 min,with another 2 min for preparing the next test.The influence of the matrix composition,the age of the printed matrices,and the interface roughness of the artificial rock substrate on the shear strength of the interface was experimentally studied.The tests were conducted at the age of the matrices at the 1st,the 4th,the 8th,the 16th,the 32nd,and the 64th min after its final setting.A dimensionless formula was established to calculate the shear strength,accounting for the age of the printed matrices,the interface roughness,and the shear failure modes.It was validated by comparing the calculated results and the experimental results of one group of samples.
文摘This paper presents a combined experimental and numerical study on the damage and performance of a soft-hard-soft (SHS) multi-layer cement based composite subjected to blast loading which can be used for protective structures and infrastructures to resist extreme loadings, and the composite consists of three layers of construction materials including asphalt concrete (AC) on the top, high strength concrete (HSC) in the middle, and engineered cementitious composites (ECC) at the bottom. To better characterize the material properties under dynamic loading, interface properties of the composite were investigated through direct shear test and also used to validate the interface model. Strain rate effects of the asphalt concrete were also studied and both compressive and tensile dynamic increase factor (DIF) curves were improved based on split Hopkinson pressure bar (SHPB) test. A full-scale field blast test investigated the blast behavior of the composite materials. The numerical model was established by taking into account the strain rate effect of all concrete materials. Furthermore, the interface properties were also considered into the model. The numerical simulation using nonlinear finite element Both the numerical and field blast test indicated that the software LS-DYNA agrees closely with the experimental data SHS composite exhibited high resistance against blast loading
文摘This paper investigates the design formula for the shear strength at the concrete-to-concrete interface proposed in Eurocode with regard to concrete layers with different strengths. Based upon the results of the study on the applicability of the design formula, push-off test is conducted on specimens with various indented interfaces to evaluate the actual behavior with respect to the surface roughness. The experimental results reveal that the interfacial shear strength increases with higher compressive strength of the concrete layers presenting different strengths and that the shear strength at the indented interface differs by 20% to 50% compared to the value predicted by the design formula. Especially, the shear strength developed between the concrete layers with different strengths appears to be different from the prediction of the design formula as much as the layers present larger difference in their compressive strengths.
文摘作为热结构材料,陶瓷基复合材料(ceramic matrix composites,CMC)在航空航天领域应用潜力巨大。连续纤维的引入解决了陶瓷脆性大的问题,而纤维与基体间微小区域——界面层的设计是保证CMC具有高韧性的关键。一直以来相关研究主要集中于界面层与CMC宏观力学性能之间的关系,受限于表征难以深入研究界面层微区力学行为的困难。随着微纳力学测试与聚焦离子束(focused ion beam,FIB)技术的发展,近些年来对于CMC界面层结合强度以及其失效行为的表征逐渐增多。在此基础上,本文综述CMC中界面层的作用以及界面剪切强度的影响因素与调控机制,同时汇总当下通过直接或间接手段测试界面剪切强度的方法,重点总结微纳力学手段下纤维push-out/push-in以及微柱压缩等方法的适用条件以及差异,报道这些方法在界面区失效机制研究方面的进展,并指明尚存在的一些问题。其中,纤维pushout/push-in可以反映基体应力作用对界面剪切强度的影响,但测试结果可能受到外部因素的影响;而微柱压缩测试则更多地反映界面层本征特性,无法反映基体应力对界面剪切强度的影响,也无法反映纤维拔出过程。最后展望未来的研究方向:进一步拓展界面微区力学行为的表征方法,同时确定微区力学与宏观力学性能间的影响机制并建立模型,最终实现CMC的界面层优化。
基金the University of Alberta Mining Department teams for their support and guidancethe Indonesia Endowment Fund for Education scholarship (Grant No. 20151112014754/LPDP/2015) for the authors’ financial assistance
文摘Application of cemented rockfilling to underground mining could not be separated from the corresponding backfill’s shear strength properties. The shear of cemented rockfill(CRF)-rock wall and the shear interaction occurring within CRFs both have some disadvantageous failure chances. In this study,we tried to investigate the complete shear properties of CRFs using direct shear and triaxial tests of cemented granite rockfill. Large-scale triaxial testing was held to accommodate the large CRF sample.Direct shear testing on the prepared flat and smooth surfaces was assessed with brief conversions and their corrections were used to approximate the shear strength envelopes of CRF joint interfaces. Two types of CRFs with the same aggregate size and distribution but different unconfined compressive strengths(UCSs) due to different mixture designs indicated insignificant differences between their basic friction angles, and also their asperity inclination angles. Nevertheless, investigation between direct shear test and triaxial test showed that the specimen with higher UCS tended to have a slightly lower friction angle but a higher cohesion than the other one.