The interfacial reaction behavior of Al and Ti_(3)AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the a...The interfacial reaction behavior of Al and Ti_(3)AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_(3)AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_(3)AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_(3)AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_(3)AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%.展开更多
In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically...In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL.展开更多
Near-α titanium matrix composites reinforced with TiB and La2O3 were synthesized by common casting and hot-working technology.The effects of β heat treatment temperature on the microstructure and the tensile propert...Near-α titanium matrix composites reinforced with TiB and La2O3 were synthesized by common casting and hot-working technology.The effects of β heat treatment temperature on the microstructure and the tensile properties of the in situ synthesized(TiB+La2O3)/Ti were studied.Microstructure was studied by OM and TEM,and tensile tests were carried out at room temperature and 923 K,respectively.Results show that with the increase of β heat treatment temperature,prior β phase grain size increases and αcolony size decreases.Room temperature tensile strength increases with the increase of β heat treatment temperature,which can be attributed to the decrease of α colony size with the increase of β heat treatment temperature.However,high-temperature tensile strength decreases with the increase of β heat treatment temperature and the decrease of the high-temperature tensile strength is due to the increase of the prior β phase grain size.展开更多
The effects of current pulsing on the microstructure, hardness and tensile properties at different temperatures of gas tungsten arc (GTA) weldments of titanium matrix composites were studied. Full-penetration butt j...The effects of current pulsing on the microstructure, hardness and tensile properties at different temperatures of gas tungsten arc (GTA) weldments of titanium matrix composites were studied. Full-penetration butt joints were made with or without current pulsing. Optical microscopy, hardness test and scanning electron microscopy were employed to evaluate the metallurgical characteristics of welded joints. Tensile properties of weldments at different temperatures were studied and correlated with the microstructure. The results exhibit that current pulsing leads to the refinement of the weld microstrucmre and TiB whisker and the redistribution of reinforcements resulting in higher hardness, tensile strength and ductility of weldments in the as-welded condition.展开更多
The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were inves...The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were investigated. The results show that squeeze casting process is an effective method to refine the grain. The composites are mainly composed of α-Mg, β-Mg17Al12 and Mg3Zn6Y icosahedral quasicrystal phase(I-phase). With the increase of applied pressure, the contents of β-Mg17Al12 phase and Mg3Zn6 Y quasicrystal particles increase, further matrix grain refinement occurs and coarse dendritic α-Mg transforms into equiaxed grain structure. The composite exhibits the maximum ultimate tensile strength and elongation of 194.3 MPa and 9.2% respectively when the applied pressure is 100 MPa, and a lot of dimples appear on the tensile fractography. Strengthening mechanisms of quasicrystal-reinforced AZ91 D magnesium matrix composites are chiefly fine-grain strengthening and quasicrystal particles strengthening.展开更多
10%(volume fraction) SiCp/Al-Mg composites with different Mg contents were successfully fabricated by semi-solid mechanical stirring technique under optimum processing conditions.Effects of Mg content on microstructur...10%(volume fraction) SiCp/Al-Mg composites with different Mg contents were successfully fabricated by semi-solid mechanical stirring technique under optimum processing conditions.Effects of Mg content on microstructure and mechanical properties were studied by scanning electron microscopy(SEM),X-ray diffractometry(XRD) and transmission electron microscopy(TEM).The results indicate that SiC particles disperse homogeneously in Al-Mg matrix and interfacial reaction between Al matrix and SiC particles is effectively controlled.Distribution of SiCp reinforcement and interfacial bonding are improved by adding Mg.Additionally,the mechanical properties of composites are remarkably improved with the Mg content increasing.展开更多
Currently, many gratifying signs of progress have been made in magnesium(Mg) matrix composites(MMCs) by virtue of their high mechanical properties both at room and elevated temperatures. Although the commonly used rei...Currently, many gratifying signs of progress have been made in magnesium(Mg) matrix composites(MMCs) by virtue of their high mechanical properties both at room and elevated temperatures. Although the commonly used reinforcements in MMCs are ceramic particles,they often provide improved yield and ultimate stresses by a significant loss in ductility. Therefore, hard metallic phases were introduced as alternative candidates for the manufacturing of MMCs, especially titanium(Ti). It has a high melting point, high Young’s modulus, high plasticity, low level of mutual solubility with Mg matrix, and closer thermal expansion coefficient to that of Mg metal than that of ceramic particles. It is highly preferable to provide both high ultimate stress and ductility in Mg matrix. However, many critical challenges for the fabrication of Ti-reinforced MMCs remain, such as Ti’s homogeneity, low recovery rate, and the optimization of interfacial bonding strength between Mg and Ti, etc. Meanwhile, different fabrication methods have various effects on the microstructures, mechanical properties, and the interfacial strength of Ti-reinforced MMCs. Hence, this review placed emphasis on the microstructural characteristics and mechanical properties of Ti-reinforced MMCs fabricated by different techniques. The influencing factors that govern the strengthening mechanisms were systematically compared and discussed. Future research trends, key issues, and prospects were also proposed to develop Ti-reinforced MMCs.展开更多
Ti-coated SiCp particles were developed by vacuum evaporation with Ti to improve the interfacial bonding of SiCp/Al composites.Ti-coated SiC particles and uncoated SiC particles reinforced Al 2519 matrix composites we...Ti-coated SiCp particles were developed by vacuum evaporation with Ti to improve the interfacial bonding of SiCp/Al composites.Ti-coated SiC particles and uncoated SiC particles reinforced Al 2519 matrix composites were prepared by hot pressing,hot extrusion and heat treatment.The influence of Ti coating on microstructure and mechanical properties of the composites was analyzed by scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).The results show that the densely deposited Ti coating reacts with SiC particles to form TiC and Ti5Si3 phases at the interface.Ti-coated SiC particle reinforced composite exhibits uniformity and compactness compared to the composite reinforced with uncoated SiC particles.The microstructure,relative density and mechanical properties of the composite are significantly improved.When the volume fraction is 15%,the hardness,fracture strain and tensile strength of the SiCp reinforced Al 2519 composite after Ti plating are optimized,which are HB 138.5,4.02%and 455 MPa,respectively.展开更多
nano-SiCp/A356 composites with different nano-SiCp contents were prepared by squeeze casting after ultrasonic treatment(UT). The effects of SiCp content on the microstructure and mechanical properties of the nanocom...nano-SiCp/A356 composites with different nano-SiCp contents were prepared by squeeze casting after ultrasonic treatment(UT). The effects of SiCp content on the microstructure and mechanical properties of the nanocomposites were investigated. Theresults show that with the addition of nano-SiCp, the microstructure of nanocomposites is obviously refined, the morphology of theα(Al) grains transforms from coarse dendrites to rosette crystals, and long acicular eutectic Si phases are shortened and rounded. Themechanical properties of 0.5%, 1% and 2% (mass fraction) SiCp/A356 nanocomposites are improved continuously with the increaseof nano-SiCp content. Especially, when the SiCp content is 2%, the tensile strength, yield strength and elongation are 259 MPa,144 MPa and 5.3%, which are increased by 19%, 69% and 15%, respectively, compared with those of the matrix alloy. Theimprovement of strength is attributed to mechanisms of Hall?Petch strengthening and Orowan strengthening.展开更多
In-situ Al2O3/TiAl composites were fabricated by pressure-assisted exothermic dispersion (PAXD) method from elemental powder mixtures of Ti, Al, TiO2, and Nb2O5. The microstructures and mechanical properties of the ...In-situ Al2O3/TiAl composites were fabricated by pressure-assisted exothermic dispersion (PAXD) method from elemental powder mixtures of Ti, Al, TiO2, and Nb2O5. The microstructures and mechanical properties of the as-sintered composites are investigated. The results show that the as-sintered products consist of γ-TiAl, α2-Ti3Al, Al2O3, and NbAl3 phases. Microstructure analysis indicates that Al2O3 particles tend to disperse on the grain boundaries. Application of a moderate pressure of 35 MPa at 1200℃ yields Al2O3/TiAl composites with fine Al2O3 reinforcement and a discontinuous network linking by Al2O3 particles. The aluminide component has a fine submicron γ +α2 lamellar microstructure. With increasing Nb2O5 content, Al2O3 particles are dispersed uniformly in the matrix. The hardness of the composites increases gradually, and the bending strength and fracture toughness of the composites reach to the maximum value, respectively.展开更多
The cermet composites WC-20wt%Co/ZrO2(E6)with four different comtents of ZrO2(3Y)were prepared by normal vacuum sinter processing;the optical microscope and SEMwere used to characterize their microstructures.The h...The cermet composites WC-20wt%Co/ZrO2(E6)with four different comtents of ZrO2(3Y)were prepared by normal vacuum sinter processing;the optical microscope and SEMwere used to characterize their microstructures.The hardness.bending strength and impact toughness of the specimens were determined.The experimental results show that ZrO2(3Y) particles in WC-20wt%Co matrix are sphcrical particles in different sizes which are distributed uniformly in Co phases and WC phases,the bending strength and impact toughness of the WC-20wt%Co cermet composites added ZrO2(3Y)improve remarkably.but the hardness values have little change.展开更多
In this study, La2O3 was investigated as an additive to TiC/W composites. The composites were prepared by vacuum hot pressing, and the microstructure and mechanical properties of the composites were investigated. Expe...In this study, La2O3 was investigated as an additive to TiC/W composites. The composites were prepared by vacuum hot pressing, and the microstructure and mechanical properties of the composites were investigated. Experimental results show that the grain size of the TiC/W composites is reduced by TiC particles. When 0.5 wt.% La2O3 is added to the composites, the grain size is reduced further. According to TEM analysis, La2O3 can alleviate the aggregation of TiC particles. With La2O3 addition, the relative density of the TiC/W composites can be improved from 95.1% to 96.5%. The hardness and elastic modulus of the TiC/W + 0.5 wt.% La2O3 composite are little improved, but the flexural strength and the fracture toughness increase to 796 MPa and 10.07 MPa·m^1/2 respectively, which are higher than those of the TiC/W composites.展开更多
The compromise between strength and plasticity has greatly limited the potential application of particles reinforced magnesium matrix composites(MMCs).In this work,the Ti particles reinforced AZ31 magnesium(Mg)matrix ...The compromise between strength and plasticity has greatly limited the potential application of particles reinforced magnesium matrix composites(MMCs).In this work,the Ti particles reinforced AZ31 magnesium(Mg)matrix composites achieved simultaneous improvement in strength,elongation and wear resistance.The Ti particles reinforced AZ31 composites were fabricated by ultrasonic-assisted stir casting with hot extrusion.The results showed that a strong interfacial bonding was obtained at Ti/Mg interface because of the formation of semicoherent orientation relationship of Ti Al/Mg,Ti Al/Al_(2)Ti and Al_(2)Ti/Mg interfaces.The as-extruded 6 wt.%Ti/AZ31 composite presented the best compressive mechanical properties and wear resistance with ultimate tensile strength,elongation and wear rate of 327 MPa,20.4%and 9.026×10^(-3)mm^(3)/m,obviously higher than those of AZ31 alloys.The enhanced mechanical properties were attributed to the grain refinement and strong interfacial bonding.The improved wear resistance was closely related to the increased hardness of composites and the formation of protective oxidation films.展开更多
Hoppressed Si3N4/SiC platelet composites had been investigated with respect to their microstructure and mechanical properties. The results indicate that Vickers hardness, elastic modulus and fracture toughness of the ...Hoppressed Si3N4/SiC platelet composites had been investigated with respect to their microstructure and mechanical properties. The results indicate that Vickers hardness, elastic modulus and fracture toughness of the composites were increased by the addition of SiC platelet until the content up to 20 vol pct. A slight decrease in flexural Strength was measured at room temperature with increasing SiC platelet content. The high temperature flexural strength tests at 1150, 1250, and 1350℃ were conducted. It was found that the flexural strength at elevated temperature was degraded with the rising temperature, and the downward trend of flexural strength for the composite containing 10 vol. pct SiC platelet was less. The results indicate that SiC platelet had a positive influence on the high temperature strength. Effects of SiC platelet reinforcement were presented展开更多
Microstructure,phase transformation and mechanical properties of NiMnGa particles/Cu composites prepared by spark plasma sintering method were investigated by SEM,EDS,XRD,susceptibility measurements and mechanical tes...Microstructure,phase transformation and mechanical properties of NiMnGa particles/Cu composites prepared by spark plasma sintering method were investigated by SEM,EDS,XRD,susceptibility measurements and mechanical tests.The NiMnGa particles were found to react with Cu matrix and the composites exhibited a similar crystal structure to the Cu matrix.The martensitic transformation and Curie transition of the composites were weakened due to the composition change of NiMnGa particles caused by reactions.With increasing NiMnGa particles content,the martensitic transformation and Curie transition of the composites were enhanced to some extent.However,the martensitic transformation temperature and Curie transition temperature were decreased by~50 K as compared to those of the original NiMnGa particles.The compressive strength of the composites increased with the increase of NiMnGa particles content,whereas the compressive strain was decreased gradually.展开更多
Reaction-bonded B_(4)C–SiC composites are highly promising materials for numerous advanced technological applications.However,their microstructure evolution mechanism remains unclear.Herein,B_(4)C–SiC composites wer...Reaction-bonded B_(4)C–SiC composites are highly promising materials for numerous advanced technological applications.However,their microstructure evolution mechanism remains unclear.Herein,B_(4)C–SiC composites were fabricated through the Si-melt infiltration process.The influences of the sintering time and the B_(4)C content on the mechanical properties,microstructure,and phase evolution were investigated.X-ray diffraction results showed the presence of SiC,boron silicon,boron silicon carbide,and boron carbide.Scanning electron microscopy results showed that with the increase in the boron carbide content,the Si content decreased and the unreacted B_(4)C amount increased when the sintering temperature reached 1650°C and the sintering time reached 1 h.The unreacted B_(4)C diminished with increasing sintering time and temperature when B_(4)C content was lower than 35wt%.Further microstructure analysis showed a transition area between B_(4)C and Si,with the C content marginally higher than in the Si area.This indicates that after the silicon infiltration,the diffusion mechanism was the primary sintering mechanism of the composites.As the diffusion process progressed,the hardness increased.The maximum values of the Vickers hardness,flexural strength,and fracture toughness of the reaction-bonded B_(4)C–SiC ceramic composite with 12wt%B_(4)C content sintered at 1600°C for 0.5 h were about HV 2400,330 MPa,and 5.2 MPa·m^(0.5),respectively.展开更多
To improve the mechanical properties of WC-Al2O3 composites, the effects of trace amount of CeO2 additives on the microstructure and mechanical properties of the WC-Al2O3 composites prepared by hot pressing were inves...To improve the mechanical properties of WC-Al2O3 composites, the effects of trace amount of CeO2 additives on the microstructure and mechanical properties of the WC-Al2O3 composites prepared by hot pressing were investigated. The results revealed that the WC-Al2O3 composites doped with 0.1% CeOz possessed refined microstructure and enhanced mechanical properties compared with that of the undoped WC-Al2O3composites. Trace CeO2 suppressed the decarburization of WC, promoted the microstructural refinement, and improved the interface coherence of the WC matrix and Al2O3. When 0.1% CeO2 was added to the WC-Al2O3 composites, the effect of CeO2 resulted in the achievement of a relative density of 98.82% with an excellent Vickers hardness of 16.89 GPa, combining a fracture toughness of 9.85 MPa. m1/2 with an acceptable flexural strength of 1 024.05 MPa.展开更多
In situ TiB2/7055 composites were successfully synthesized via magnetic chemical direct melt reaction from 7055 (Al-3B)?Ti system. The phase composition and the microstructure of the composites were investigated by...In situ TiB2/7055 composites were successfully synthesized via magnetic chemical direct melt reaction from 7055 (Al-3B)?Ti system. The phase composition and the microstructure of the composites were investigated by XRD, OM and SEM technologies, and the mechanical and wear properties were tested. The results indicate that with the pulsed magnetic field assistance, the morphologies of in situ TiB2 particles are mainly hexagonal-shape or nearly spherical, the sizes are less than 1 μm, and the distribution of the matrix is uniform. Compared the microstructures of the 7055 aluminum matrix composites synthesized without pulsed magnetic field, the average size ofα(Al) phase with pulsed magnetic field assistance is decreased from 20 to 10μm, the array of the second phase is changed from continuous net-shape to discontinuous shape. With the pulsed magnetic field, the tensile strengths of the composites are enhanced from 310 to 330 MPa, and the elongations are increased from 7.5%to 8.0%. In addition, compared with matrix alloy, the wear mass loss of the composites is decreased from 111 to 78 mg under a load of 100 N for 120 min.展开更多
The composite of Dy-α-sialon/10 wt pct nano-size SiC particles has been prepared from precursor powders of Si3N4, AIN, Al2O3, Dy2O3 and nano-size β-SiC. The hardness, toughness and bending strength of the composite ...The composite of Dy-α-sialon/10 wt pct nano-size SiC particles has been prepared from precursor powders of Si3N4, AIN, Al2O3, Dy2O3 and nano-size β-SiC. The hardness, toughness and bending strength of the composite at ambient temperature are a little higher than those of Dy-α-sialon.while the bending strength is maintained up to 1000℃ and about 2 times more than that of Dy-α-sialon at the same temperature. The fracture surfaces show that the grain size of the composite is smaller than that of Dy-α-sialon, and both Of them have predominately transgranular mode of fracture. It is believed that the decrease of the bending strength of Dy-α-sialon at elevated temperature is caused by the viscous flow of the grain boundary phase, while the addition of nanosize SiC particles effectively increases the viscosity of the grain boundary phase and therefore prevents the strength loss of Dy-α-sialon/nano-size SiC composites at elevated temperature展开更多
基金financially supported by the National Natural Science Foundation of China(No.51965040)Science and Technology Project of Jiangxi Provincial Department of Transportation,China(No.2022H0048)。
文摘The interfacial reaction behavior of Al and Ti_(3)AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_(3)AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_(3)AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_(3)AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_(3)AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%.
基金the supports provided by the National Natural Science Foundation of China(Nos.52075198 and 52271102)the China Postdoctoral Science Foundation(No.2021M691112)+1 种基金the State Key Lab of Advanced Metals and Materials(No.2021-ZD07)the Analytical and Testing Center,HUST。
文摘In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL.
基金Project (2012CB619600) supported by the National Basic Research Program of ChinaProject (51371114) supported by the National Natural Science Foundation of ChinaProject (12XD1402800) supported by Excellent Academic Leaders Program of Shanghai,China
文摘Near-α titanium matrix composites reinforced with TiB and La2O3 were synthesized by common casting and hot-working technology.The effects of β heat treatment temperature on the microstructure and the tensile properties of the in situ synthesized(TiB+La2O3)/Ti were studied.Microstructure was studied by OM and TEM,and tensile tests were carried out at room temperature and 923 K,respectively.Results show that with the increase of β heat treatment temperature,prior β phase grain size increases and αcolony size decreases.Room temperature tensile strength increases with the increase of β heat treatment temperature,which can be attributed to the decrease of α colony size with the increase of β heat treatment temperature.However,high-temperature tensile strength decreases with the increase of β heat treatment temperature and the decrease of the high-temperature tensile strength is due to the increase of the prior β phase grain size.
基金Project(51371114)supported by the National Natural Science Foundation of ChinaProject(2012CB619600)supported by the National Basic Research Program of China+1 种基金Project(10SG15)supported by the Dawn Program of Shanghai Education Commission,ChinaProject(12XD1402800)supported by Shanghai Science and Technology Committee,China
文摘The effects of current pulsing on the microstructure, hardness and tensile properties at different temperatures of gas tungsten arc (GTA) weldments of titanium matrix composites were studied. Full-penetration butt joints were made with or without current pulsing. Optical microscopy, hardness test and scanning electron microscopy were employed to evaluate the metallurgical characteristics of welded joints. Tensile properties of weldments at different temperatures were studied and correlated with the microstructure. The results exhibit that current pulsing leads to the refinement of the weld microstrucmre and TiB whisker and the redistribution of reinforcements resulting in higher hardness, tensile strength and ductility of weldments in the as-welded condition.
基金Projects(5120414751274175)supported by the National Natural Science Foundation of China+3 种基金Projects(2011DFA505202014DFA50320)supported by the International Cooperation Program from the Ministry of Science and Technology of ChinaProject(20123088)supported by the Foundation for Graduate Students of Shanxi ProvinceChina
文摘The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were investigated. The results show that squeeze casting process is an effective method to refine the grain. The composites are mainly composed of α-Mg, β-Mg17Al12 and Mg3Zn6Y icosahedral quasicrystal phase(I-phase). With the increase of applied pressure, the contents of β-Mg17Al12 phase and Mg3Zn6 Y quasicrystal particles increase, further matrix grain refinement occurs and coarse dendritic α-Mg transforms into equiaxed grain structure. The composite exhibits the maximum ultimate tensile strength and elongation of 194.3 MPa and 9.2% respectively when the applied pressure is 100 MPa, and a lot of dimples appear on the tensile fractography. Strengthening mechanisms of quasicrystal-reinforced AZ91 D magnesium matrix composites are chiefly fine-grain strengthening and quasicrystal particles strengthening.
基金Project(2006CB605203-3) supported by the National Basic Research Program of China
文摘10%(volume fraction) SiCp/Al-Mg composites with different Mg contents were successfully fabricated by semi-solid mechanical stirring technique under optimum processing conditions.Effects of Mg content on microstructure and mechanical properties were studied by scanning electron microscopy(SEM),X-ray diffractometry(XRD) and transmission electron microscopy(TEM).The results indicate that SiC particles disperse homogeneously in Al-Mg matrix and interfacial reaction between Al matrix and SiC particles is effectively controlled.Distribution of SiCp reinforcement and interfacial bonding are improved by adding Mg.Additionally,the mechanical properties of composites are remarkably improved with the Mg content increasing.
基金National Natural Science Foundation of China (52101123, 52171103)Guangdong Major Project of Basic and Applied Basic Research (2020B0301030006) for the support。
文摘Currently, many gratifying signs of progress have been made in magnesium(Mg) matrix composites(MMCs) by virtue of their high mechanical properties both at room and elevated temperatures. Although the commonly used reinforcements in MMCs are ceramic particles,they often provide improved yield and ultimate stresses by a significant loss in ductility. Therefore, hard metallic phases were introduced as alternative candidates for the manufacturing of MMCs, especially titanium(Ti). It has a high melting point, high Young’s modulus, high plasticity, low level of mutual solubility with Mg matrix, and closer thermal expansion coefficient to that of Mg metal than that of ceramic particles. It is highly preferable to provide both high ultimate stress and ductility in Mg matrix. However, many critical challenges for the fabrication of Ti-reinforced MMCs remain, such as Ti’s homogeneity, low recovery rate, and the optimization of interfacial bonding strength between Mg and Ti, etc. Meanwhile, different fabrication methods have various effects on the microstructures, mechanical properties, and the interfacial strength of Ti-reinforced MMCs. Hence, this review placed emphasis on the microstructural characteristics and mechanical properties of Ti-reinforced MMCs fabricated by different techniques. The influencing factors that govern the strengthening mechanisms were systematically compared and discussed. Future research trends, key issues, and prospects were also proposed to develop Ti-reinforced MMCs.
基金Project(CXZZ20140506150310438)supported by the Science and Technology Program of Shenzhen,ChinaProject(2017GK2261)supported by the Science and Technology Program of Hunan Province,ChinaProject(2017zzts111)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘Ti-coated SiCp particles were developed by vacuum evaporation with Ti to improve the interfacial bonding of SiCp/Al composites.Ti-coated SiC particles and uncoated SiC particles reinforced Al 2519 matrix composites were prepared by hot pressing,hot extrusion and heat treatment.The influence of Ti coating on microstructure and mechanical properties of the composites was analyzed by scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).The results show that the densely deposited Ti coating reacts with SiC particles to form TiC and Ti5Si3 phases at the interface.Ti-coated SiC particle reinforced composite exhibits uniformity and compactness compared to the composite reinforced with uncoated SiC particles.The microstructure,relative density and mechanical properties of the composite are significantly improved.When the volume fraction is 15%,the hardness,fracture strain and tensile strength of the SiCp reinforced Al 2519 composite after Ti plating are optimized,which are HB 138.5,4.02%and 455 MPa,respectively.
基金Project(51574129)supported by the National Natural Science Foundation of ChinaProject(2016209A001)supported by JCKY Foundation,China
文摘nano-SiCp/A356 composites with different nano-SiCp contents were prepared by squeeze casting after ultrasonic treatment(UT). The effects of SiCp content on the microstructure and mechanical properties of the nanocomposites were investigated. Theresults show that with the addition of nano-SiCp, the microstructure of nanocomposites is obviously refined, the morphology of theα(Al) grains transforms from coarse dendrites to rosette crystals, and long acicular eutectic Si phases are shortened and rounded. Themechanical properties of 0.5%, 1% and 2% (mass fraction) SiCp/A356 nanocomposites are improved continuously with the increaseof nano-SiCp content. Especially, when the SiCp content is 2%, the tensile strength, yield strength and elongation are 259 MPa,144 MPa and 5.3%, which are increased by 19%, 69% and 15%, respectively, compared with those of the matrix alloy. Theimprovement of strength is attributed to mechanisms of Hall?Petch strengthening and Orowan strengthening.
基金supported by the Special Program for Education Bureau of Shaanxi Province, China(Grant No.08JK240)the Breeding Program for Provincial Level Key Research Base of Shaanxi University of Technology, China (Grant No.SLGJD0806)Scientific Research Start up Program for Introduced Talents of Shaanxi University of Technology, China (Grant No.SLGQD0751).
文摘In-situ Al2O3/TiAl composites were fabricated by pressure-assisted exothermic dispersion (PAXD) method from elemental powder mixtures of Ti, Al, TiO2, and Nb2O5. The microstructures and mechanical properties of the as-sintered composites are investigated. The results show that the as-sintered products consist of γ-TiAl, α2-Ti3Al, Al2O3, and NbAl3 phases. Microstructure analysis indicates that Al2O3 particles tend to disperse on the grain boundaries. Application of a moderate pressure of 35 MPa at 1200℃ yields Al2O3/TiAl composites with fine Al2O3 reinforcement and a discontinuous network linking by Al2O3 particles. The aluminide component has a fine submicron γ +α2 lamellar microstructure. With increasing Nb2O5 content, Al2O3 particles are dispersed uniformly in the matrix. The hardness of the composites increases gradually, and the bending strength and fracture toughness of the composites reach to the maximum value, respectively.
文摘The cermet composites WC-20wt%Co/ZrO2(E6)with four different comtents of ZrO2(3Y)were prepared by normal vacuum sinter processing;the optical microscope and SEMwere used to characterize their microstructures.The hardness.bending strength and impact toughness of the specimens were determined.The experimental results show that ZrO2(3Y) particles in WC-20wt%Co matrix are sphcrical particles in different sizes which are distributed uniformly in Co phases and WC phases,the bending strength and impact toughness of the WC-20wt%Co cermet composites added ZrO2(3Y)improve remarkably.but the hardness values have little change.
基金financially supported by the Youth-Innova-tion-Community Fund of Hefei University of Technology (No. 103-037016)the Collaboration Project with the Institute of Plasma Physics, Chinese Academy of Sciences (No.103-413361)
文摘In this study, La2O3 was investigated as an additive to TiC/W composites. The composites were prepared by vacuum hot pressing, and the microstructure and mechanical properties of the composites were investigated. Experimental results show that the grain size of the TiC/W composites is reduced by TiC particles. When 0.5 wt.% La2O3 is added to the composites, the grain size is reduced further. According to TEM analysis, La2O3 can alleviate the aggregation of TiC particles. With La2O3 addition, the relative density of the TiC/W composites can be improved from 95.1% to 96.5%. The hardness and elastic modulus of the TiC/W + 0.5 wt.% La2O3 composite are little improved, but the flexural strength and the fracture toughness increase to 796 MPa and 10.07 MPa·m^1/2 respectively, which are higher than those of the TiC/W composites.
基金the financial supports from the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030006)the National Natural Science Foundation of China(Nos.52171103,52171133)+3 种基金the Natural Science Foundation of Chongqing(cstc2019jcyjmsxm X0234)the“111 Project”(B16007)by the Ministry of Educationthe Fundamental Research Funds for the Central Universities(No.2020CDJDPT001)Graduate Research and Innovation Foundation of Chongqing,China(No.CYB21001)。
文摘The compromise between strength and plasticity has greatly limited the potential application of particles reinforced magnesium matrix composites(MMCs).In this work,the Ti particles reinforced AZ31 magnesium(Mg)matrix composites achieved simultaneous improvement in strength,elongation and wear resistance.The Ti particles reinforced AZ31 composites were fabricated by ultrasonic-assisted stir casting with hot extrusion.The results showed that a strong interfacial bonding was obtained at Ti/Mg interface because of the formation of semicoherent orientation relationship of Ti Al/Mg,Ti Al/Al_(2)Ti and Al_(2)Ti/Mg interfaces.The as-extruded 6 wt.%Ti/AZ31 composite presented the best compressive mechanical properties and wear resistance with ultimate tensile strength,elongation and wear rate of 327 MPa,20.4%and 9.026×10^(-3)mm^(3)/m,obviously higher than those of AZ31 alloys.The enhanced mechanical properties were attributed to the grain refinement and strong interfacial bonding.The improved wear resistance was closely related to the increased hardness of composites and the formation of protective oxidation films.
文摘Hoppressed Si3N4/SiC platelet composites had been investigated with respect to their microstructure and mechanical properties. The results indicate that Vickers hardness, elastic modulus and fracture toughness of the composites were increased by the addition of SiC platelet until the content up to 20 vol pct. A slight decrease in flexural Strength was measured at room temperature with increasing SiC platelet content. The high temperature flexural strength tests at 1150, 1250, and 1350℃ were conducted. It was found that the flexural strength at elevated temperature was degraded with the rising temperature, and the downward trend of flexural strength for the composite containing 10 vol. pct SiC platelet was less. The results indicate that SiC platelet had a positive influence on the high temperature strength. Effects of SiC platelet reinforcement were presented
基金supported by the National Natural Science Foundation of China(No.51201044)High-level Scientific Research Guidance Project of Harbin Engineering University,China(No.3072022TS1006)+1 种基金Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province,China(No.LBH-Q16046)Key Laboratory of Superlight Materials&Surface Technology(Harbin Engineering University),Ministry of Education,China.
文摘Microstructure,phase transformation and mechanical properties of NiMnGa particles/Cu composites prepared by spark plasma sintering method were investigated by SEM,EDS,XRD,susceptibility measurements and mechanical tests.The NiMnGa particles were found to react with Cu matrix and the composites exhibited a similar crystal structure to the Cu matrix.The martensitic transformation and Curie transition of the composites were weakened due to the composition change of NiMnGa particles caused by reactions.With increasing NiMnGa particles content,the martensitic transformation and Curie transition of the composites were enhanced to some extent.However,the martensitic transformation temperature and Curie transition temperature were decreased by~50 K as compared to those of the original NiMnGa particles.The compressive strength of the composites increased with the increase of NiMnGa particles content,whereas the compressive strain was decreased gradually.
基金financially supported by the National Natural Science Foundation of China(No.51875222)the China Postdoctoral Science Foundation(No.2017M622426)+1 种基金the First Class Special Funding for Postdoctoral Scientific Research of Hubei Province,China(No.2017-G3)the Opening Fund of State key laboratory for Environmentfriendly Energy Materials(No.17kffk 12)。
文摘Reaction-bonded B_(4)C–SiC composites are highly promising materials for numerous advanced technological applications.However,their microstructure evolution mechanism remains unclear.Herein,B_(4)C–SiC composites were fabricated through the Si-melt infiltration process.The influences of the sintering time and the B_(4)C content on the mechanical properties,microstructure,and phase evolution were investigated.X-ray diffraction results showed the presence of SiC,boron silicon,boron silicon carbide,and boron carbide.Scanning electron microscopy results showed that with the increase in the boron carbide content,the Si content decreased and the unreacted B_(4)C amount increased when the sintering temperature reached 1650°C and the sintering time reached 1 h.The unreacted B_(4)C diminished with increasing sintering time and temperature when B_(4)C content was lower than 35wt%.Further microstructure analysis showed a transition area between B_(4)C and Si,with the C content marginally higher than in the Si area.This indicates that after the silicon infiltration,the diffusion mechanism was the primary sintering mechanism of the composites.As the diffusion process progressed,the hardness increased.The maximum values of the Vickers hardness,flexural strength,and fracture toughness of the reaction-bonded B_(4)C–SiC ceramic composite with 12wt%B_(4)C content sintered at 1600°C for 0.5 h were about HV 2400,330 MPa,and 5.2 MPa·m^(0.5),respectively.
文摘To improve the mechanical properties of WC-Al2O3 composites, the effects of trace amount of CeO2 additives on the microstructure and mechanical properties of the WC-Al2O3 composites prepared by hot pressing were investigated. The results revealed that the WC-Al2O3 composites doped with 0.1% CeOz possessed refined microstructure and enhanced mechanical properties compared with that of the undoped WC-Al2O3composites. Trace CeO2 suppressed the decarburization of WC, promoted the microstructural refinement, and improved the interface coherence of the WC matrix and Al2O3. When 0.1% CeO2 was added to the WC-Al2O3 composites, the effect of CeO2 resulted in the achievement of a relative density of 98.82% with an excellent Vickers hardness of 16.89 GPa, combining a fracture toughness of 9.85 MPa. m1/2 with an acceptable flexural strength of 1 024.05 MPa.
基金Projects(50971066,51174098)supported by the National Natural Science Foundation of ChinaProject(2008-46)supported by Jiangsu Provincial"333"Project of Training the High-level Talents Foundation,China+3 种基金Project(BE2009127)supported by Jiangsu Provincial Science Supporting Item,ChinaProject(2011-11)supported by Jiangsu Provincial College Excellent Science and Technology Innovation Team,ChinaProject(kjsmcx0903)supported by Jiangsu Key Laboratory of Tribology Project,ChinaProject(1201220072)supported by Jiangsu Province Undergraduate Practice-Innovation Training,China
文摘In situ TiB2/7055 composites were successfully synthesized via magnetic chemical direct melt reaction from 7055 (Al-3B)?Ti system. The phase composition and the microstructure of the composites were investigated by XRD, OM and SEM technologies, and the mechanical and wear properties were tested. The results indicate that with the pulsed magnetic field assistance, the morphologies of in situ TiB2 particles are mainly hexagonal-shape or nearly spherical, the sizes are less than 1 μm, and the distribution of the matrix is uniform. Compared the microstructures of the 7055 aluminum matrix composites synthesized without pulsed magnetic field, the average size ofα(Al) phase with pulsed magnetic field assistance is decreased from 20 to 10μm, the array of the second phase is changed from continuous net-shape to discontinuous shape. With the pulsed magnetic field, the tensile strengths of the composites are enhanced from 310 to 330 MPa, and the elongations are increased from 7.5%to 8.0%. In addition, compared with matrix alloy, the wear mass loss of the composites is decreased from 111 to 78 mg under a load of 100 N for 120 min.
文摘The composite of Dy-α-sialon/10 wt pct nano-size SiC particles has been prepared from precursor powders of Si3N4, AIN, Al2O3, Dy2O3 and nano-size β-SiC. The hardness, toughness and bending strength of the composite at ambient temperature are a little higher than those of Dy-α-sialon.while the bending strength is maintained up to 1000℃ and about 2 times more than that of Dy-α-sialon at the same temperature. The fracture surfaces show that the grain size of the composite is smaller than that of Dy-α-sialon, and both Of them have predominately transgranular mode of fracture. It is believed that the decrease of the bending strength of Dy-α-sialon at elevated temperature is caused by the viscous flow of the grain boundary phase, while the addition of nanosize SiC particles effectively increases the viscosity of the grain boundary phase and therefore prevents the strength loss of Dy-α-sialon/nano-size SiC composites at elevated temperature