The purpose of this paper is to construct quotient algebras L(A) 1 ? /I(A) of complex degenerate composition Lie algebras L(A) 1 ? by some ideals, where L(A 1 ? is defined via Hall algebras of tubular algebras A, and ...The purpose of this paper is to construct quotient algebras L(A) 1 ? /I(A) of complex degenerate composition Lie algebras L(A) 1 ? by some ideals, where L(A 1 ? is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A) 1 ? /I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra L re(A) 1 ? generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A) 1 ? generated by simple A-modules.展开更多
The author constructs the Casimir element of Hall algebras. By the method of Gabber-Kac theorem (see [4]), it is proved that the Serre relations are the defining relations in composition algebra.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10371101 and 10671161)
文摘The purpose of this paper is to construct quotient algebras L(A) 1 ? /I(A) of complex degenerate composition Lie algebras L(A) 1 ? by some ideals, where L(A 1 ? is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A) 1 ? /I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra L re(A) 1 ? generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A) 1 ? generated by simple A-modules.
文摘The author constructs the Casimir element of Hall algebras. By the method of Gabber-Kac theorem (see [4]), it is proved that the Serre relations are the defining relations in composition algebra.