Plant pesticide residues, such as chinaberry (Melia toosendan) residue and sand cypress (Sabina vulgaris) residue, are pesticidal plant materials discarded after the bioactive ingredient has been extracted with or...Plant pesticide residues, such as chinaberry (Melia toosendan) residue and sand cypress (Sabina vulgaris) residue, are pesticidal plant materials discarded after the bioactive ingredient has been extracted with organic solvents. The only option for botanical pesticide residue utilization has been as landfill. Chinaberry residue (CBR) and sand cypress residue (SCR) were collected and composted in Yangling, Shaanxi Province, China. We studied the effects of chinaberry residue compost (CBRC), CBRC incorporated with Trichoderma viride (CBRCT), sand cypress residue compost (SCRC), and SCRC incorporated with T. viride (SCRCv) on the root-knot nematode, Meloidogyne incognita, infesting the balloonflower (Platycodon grandiflorum). Bioassay results indicated that stock solutions of the CBRCT and SCRCT extracts significantly inhibited egg hatching and caused high larval mortality, followed in degree by the CBRC and SCRC extracts. The CBR and SCR extracts caused very low inhibition of eggs and larvae. Supplementing potting mixtures with these four composts reduced the severity of root galling and increased the proportion of marketable roots. The severity of root galling decreased and the average weight of the marketable roots increased with an increase in all the composts when supplemented at rates from 5 to 30%. CBR- and SCR-supplemented pot soils also inhibited the nematodes, but CBR and SCR applied to the soil had a phytotoxic effect and inhibited balloonflower growth. Supplementing field soil with the composts reduced the severity of root galling and the populations of southern root-knot nematodes in the soil. CBRCT and SCRCT clearly enhanced the average weight of the marketable roots by 30.45 and 26.64%, respectively. Continuous supplementation with CBRCT or SCRCT in the same field significantly enhanced the control of the root-knot nematode, and the populations of nematodes continued to decrease with second inoculations. The populations of total Trichoderma spp. were distinctly enhanced and were maintained at high levels for a long time in the supplemented soils.展开更多
The aim of this study was to investigate the effect of the food wastes compost (FWC) and its non-aerated fermented extract (NFCE) on seed germination and growth of tomato (<i>Solanum</i> <i>lycopersi...The aim of this study was to investigate the effect of the food wastes compost (FWC) and its non-aerated fermented extract (NFCE) on seed germination and growth of tomato (<i>Solanum</i> <i>lycopersicum</i> L.), watercress (<i>Nasturtium</i> <i>officinale</i>), chili pepper (<i>Capsicum</i> <i>annuum</i>), peas (<i>Pisum</i> <i>sativum</i> L.), chickpea (<i>Cicer</i> <i>arietinum</i>) and beans (<i>Vicia</i> <i>faba</i>) under greenhouse conditions. The FWC and NFCE were physico-chemically and microbiologically characterized. The NFCE effect was evaluated on tomato, watercress, and chili pepper seeds germination and seedling growth. However, for leguminous, pea, chickpea and bean seedlings, the FWC amended soils and irrigated with NFCE were tested for plants growth. The results of FWC analyses revealed that FWC has neutral pH, low EC and C/N ratio, with fertilizing elements (N, P, K and Mg) and lack of phytotoxic effect. The NFCE was characterized by low EC and relatively high carbon content (COD = 9700 mg/l), and intense microbial activity, notably mesophilic bacteria. Therefore, in fermented compost extract, mesophilic bacteria were increased by 225, yeasts by 25 and molds by 10 times compared to those of the investigated compost. In greenhouse, the diluted NFCE increased significantly (<i>p</i>< 0.05) germination and growth of the tested seedlings. Used alone, the FWC amended soil or the NFCE irrigated soil, improved the growth of tested seedlings. The use of soil amended with compost and irrigated by fermented compost extract decreased significantly the growth of the same experimented seedlings. Therefore, the FWC and its fermented extract were a suitable substrate for germination and growth of the studied seeds.展开更多
基金supported by the Important Projec of China's Western Development (2004BA901A14)
文摘Plant pesticide residues, such as chinaberry (Melia toosendan) residue and sand cypress (Sabina vulgaris) residue, are pesticidal plant materials discarded after the bioactive ingredient has been extracted with organic solvents. The only option for botanical pesticide residue utilization has been as landfill. Chinaberry residue (CBR) and sand cypress residue (SCR) were collected and composted in Yangling, Shaanxi Province, China. We studied the effects of chinaberry residue compost (CBRC), CBRC incorporated with Trichoderma viride (CBRCT), sand cypress residue compost (SCRC), and SCRC incorporated with T. viride (SCRCv) on the root-knot nematode, Meloidogyne incognita, infesting the balloonflower (Platycodon grandiflorum). Bioassay results indicated that stock solutions of the CBRCT and SCRCT extracts significantly inhibited egg hatching and caused high larval mortality, followed in degree by the CBRC and SCRC extracts. The CBR and SCR extracts caused very low inhibition of eggs and larvae. Supplementing potting mixtures with these four composts reduced the severity of root galling and increased the proportion of marketable roots. The severity of root galling decreased and the average weight of the marketable roots increased with an increase in all the composts when supplemented at rates from 5 to 30%. CBR- and SCR-supplemented pot soils also inhibited the nematodes, but CBR and SCR applied to the soil had a phytotoxic effect and inhibited balloonflower growth. Supplementing field soil with the composts reduced the severity of root galling and the populations of southern root-knot nematodes in the soil. CBRCT and SCRCT clearly enhanced the average weight of the marketable roots by 30.45 and 26.64%, respectively. Continuous supplementation with CBRCT or SCRCT in the same field significantly enhanced the control of the root-knot nematode, and the populations of nematodes continued to decrease with second inoculations. The populations of total Trichoderma spp. were distinctly enhanced and were maintained at high levels for a long time in the supplemented soils.
文摘The aim of this study was to investigate the effect of the food wastes compost (FWC) and its non-aerated fermented extract (NFCE) on seed germination and growth of tomato (<i>Solanum</i> <i>lycopersicum</i> L.), watercress (<i>Nasturtium</i> <i>officinale</i>), chili pepper (<i>Capsicum</i> <i>annuum</i>), peas (<i>Pisum</i> <i>sativum</i> L.), chickpea (<i>Cicer</i> <i>arietinum</i>) and beans (<i>Vicia</i> <i>faba</i>) under greenhouse conditions. The FWC and NFCE were physico-chemically and microbiologically characterized. The NFCE effect was evaluated on tomato, watercress, and chili pepper seeds germination and seedling growth. However, for leguminous, pea, chickpea and bean seedlings, the FWC amended soils and irrigated with NFCE were tested for plants growth. The results of FWC analyses revealed that FWC has neutral pH, low EC and C/N ratio, with fertilizing elements (N, P, K and Mg) and lack of phytotoxic effect. The NFCE was characterized by low EC and relatively high carbon content (COD = 9700 mg/l), and intense microbial activity, notably mesophilic bacteria. Therefore, in fermented compost extract, mesophilic bacteria were increased by 225, yeasts by 25 and molds by 10 times compared to those of the investigated compost. In greenhouse, the diluted NFCE increased significantly (<i>p</i>< 0.05) germination and growth of the tested seedlings. Used alone, the FWC amended soil or the NFCE irrigated soil, improved the growth of tested seedlings. The use of soil amended with compost and irrigated by fermented compost extract decreased significantly the growth of the same experimented seedlings. Therefore, the FWC and its fermented extract were a suitable substrate for germination and growth of the studied seeds.