期刊文献+
共找到407篇文章
< 1 2 21 >
每页显示 20 50 100
Analysis of the Fertilizing and Bioremediation Potential of Leaf Litter Compost Amendment in Different Soils through Indexing Method
1
作者 Sophayo Mahongnao Pooja Sharma +1 位作者 Arif Ahamad Sarita Nanda 《Journal of Environmental Protection》 2024年第3期265-297,共33页
This research study explored the efficacy of leaf litter compost as a sustainable soil amendment with the objective of promoting soil health and mitigating the accumulation of potentially toxic elements. The investiga... This research study explored the efficacy of leaf litter compost as a sustainable soil amendment with the objective of promoting soil health and mitigating the accumulation of potentially toxic elements. The investigation encompassed the impact of various organic compost amendments, including leaf compost, cow dung manure, kitchen waste compost, municipal organic waste compost, and vermicompost. The study employed Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to evaluate soil nutrient levels and concentrations of Potentially Toxic Elements (PTEs) such as arsenic, chromium, cadmium, mercury, lead, nickel, and lithium. The fertilization and bioremediation potential of these compost amendments are quantified using an indexing method. Results indicated a substantial increase in overall nutrient levels (carbon, nitrogen, phosphorus, potassium, and sulfur) in soils treated with leaf compost and other organic composts. Fertility indices (FI) are notably higher in compost-amended soils (ranging from 2.667 to 3.938) compared to those amended with chemical fertilizers (ranging from 2.250 to 2.813) across all soil samples. Furthermore, the mean concentrations of PTEs were significantly lower in soils treated with leaf compost and other organic compost amendments compared to those treated with chemical fertilizers amendments. The assessment through the indexing method revealed a high clean index (CI) for leaf compost amendment (ranging from 3.407 to 3.58), whereas the chemical fertilizer amendment exhibits a relatively lower CI (ranging from 2.78 to 3.20). Consequently, leaf compost and other organic composts exhibit the potential to enhance sustainable productivity, promoting soil health and environmental safety by improving nutrient levels and remediating potentially toxic elements in the soil. 展开更多
关键词 Bio-compost soil Fertility Potentially Toxic Elements BIOREMEDIATION
下载PDF
Effect of Different Rates and Mixtures of Solid Household Waste and Faecal Sludge-Based Composts on Soil Fertility and Productivity of Sunflower (Helianthus annuus L.) in Dschang, West Cameroon
2
作者 Romary Ngnipa Tchinda Rodrigue Emmanuel Kenne +7 位作者 Primus Azinwi Tamfuh Jovanie Gladys Kenfack Doris Temgoua Zombou Désiré Évariste Moundjeu Tsafack   Richard Tanwi Ghogomu Emile Temgoua Dieudonné Bitom Oyono 《Open Journal of Soil Science》 2024年第7期448-470,共23页
The unbalanced and inadequate use of fertilizers is one of the causes of soil degradation. Combined with the ever-increasing population, it is necessary to find sustainable agricultural production alternatives. The pr... The unbalanced and inadequate use of fertilizers is one of the causes of soil degradation. Combined with the ever-increasing population, it is necessary to find sustainable agricultural production alternatives. The present work aims to determine the effect of different rates and mixtutes of organic amendments on soil fertility and the performance of Sunflower (Helianthus annuus L.). In the field, treatments consisted of solid household waste and faecal sludge in the ratios of 3/5 (V1), and a mixture of faecal sludge and household waste in the ratio of 3/5 with 900 worms (V2). At the end of the composting process, V1, V2 composts and the poultry manure (PM) were applied at rates of 4, 5 and 6 t∙ha−1 in a randomized complete block design with three replications. Soil samples were collected before and after the experiment and analyzed. The main results revealed that at the end of the composting process, there was a progressive improvement in the physico-chemical properties of V1 and V2 composts. In particular, the C/N ratio, phosphorus (P) and total nitrogen (TN) initially at 16.49 ± 0.42 (V1, V2), 21.06 ± 0.07 mg∙kg−1 (V1, V2), 0.76% ± 0.08% (V1, V2) respectively, increased after 60 days to 12.40 ± 0.41 (V1), 9.74 ± 0.28 (V2) for C/N, 21.94 ± 0.63 mg∙kg−1 (V1) and 22.04 ± 0.04 mg∙kg−1 (V2) for P, 0.96% ± 0.0% (V1) and 1.22 ± 0.04 (V2) for TN. The application of 6 t∙ha−1of PM had the greatest influence on the diameter and weight of the flower heads (27.16 ± 4.01 t∙ha−1 and 230.83 ± 2.64 t∙ha−1), while 4 t∙ha−1 of V2 gave the tallest sunflower plants (110.07 ± 73.28 cm) as well as the diameter at the crown (19.30 ± 9.07 cm). However, CEC was most influenced by 4 t∙ha−1 of V1, while 4 t∙ha−1 of PM had the greatest effect on organic carbon and phosphorus. However, 5 t∙ha−1 of PM showed the highest sunflower production and yield (1.67 ± 0.21 t∙ha−1). The combination with 900 earthworms is recommended for composting and 5 t∙ha−1 of PM is recommended to obtain a better sunflower production. 展开更多
关键词 SUNFLOWER Faecal Sludge Household Waste compost soil Fertility
下载PDF
Urban Soil Compaction Remediation by Shallow Tillage and Compost in Hydroseeded Lawn
3
作者 James Jihoon Kang Adam Flores +1 位作者 Engil Isadora Pujol Pereira Jungseok Ho 《Open Journal of Soil Science》 2024年第7期399-415,共17页
Construction activities often involve removal of topsoil and compaction of the exposed soil by heavy equipments. Such compacted soils with low organic matter can lead to low infiltration and poor vegetation establishm... Construction activities often involve removal of topsoil and compaction of the exposed soil by heavy equipments. Such compacted soils with low organic matter can lead to low infiltration and poor vegetation establishment. The objective of this study was to investigate the efficacy of tillage (shallow till) and compost on soil physical and biological properties in a hydroseeded lawn as a post-construction best management practice for soil compaction remediation. The experimental site received a total of four land treatments in five replicated trials and it was hydroseeded with common Bermuda grass: 1) No Tillage + Compost (NT-C), 2) No Tillage + No Compost (NT-NC;control), 3) Tillage + Compost (T-C), and 4) Tillage + No Compost (T-NC). Bulk density (BD), infiltration rate (IR), and wet aggregate stability (WAS) in each plot were measured to assess soil physical properties while soil organic matter (SOM) and enzyme activity (β-glucosidase, acid-phosphatase, and alkaline-phosphatase) were measured for soil biological properties. Over a 15-months of monitoring period, the shallow tillage loosened the soil initially, but its effect on BD without compost was diminished to control plot level (NT-NC) within 4 months after hydroseeding. Both tillage and compost led to an increase in IR, and it remained higher than control by 2 - 3 times throughout the observation period. The WAS and β-glucosidase activity decreased in tilled plot unless there was compost application. Turfgrass showed greener leaves and aggregated roots in the compost-amended plots (NT-C and T-C). Our results suggest that compost application plays a key role in improving soil physical and biological properties in hydroseeded lawns from construction sites. 展开更多
关键词 COMPACTION compost INFILTRATION soil Organic Matter soil Enzyme TILLAGE Wet Aggregate Stability
下载PDF
Evaluation of Cobalt Application Combined with Gypsum and Compost as a Regulator of Cabbage Plant Tolerance to Soil Salinity
4
作者 Abd-Elbaset A. Alkharpotly Mohamed A. E. Soliman +11 位作者 Mohamed A. El-Sherpiny Ahmed G. Baddour Dina A. Ghazi Zinab A. Abdelgawad Mohamed A. Abdein Fahad Mohammed Alzuaibr Abdulrahman Alasmari Abdulaziz Albogami Mesfer M. Alqahtani Hebat-Allah A. Hussein Fatma M. A. Elkady Mohamed F. M. Abdelkader 《Open Journal of Ecology》 2023年第12期914-930,共17页
In response to the global food crisis and the imperative to address soil degradation, the international agricultural policy is actively working to alleviate the adverse impacts of soil salinity. As part of this initia... In response to the global food crisis and the imperative to address soil degradation, the international agricultural policy is actively working to alleviate the adverse impacts of soil salinity. As part of this initiative, a field trial spanning two consecutive seasons (2019/20-2020/21) was conducted under saline conditions. The primary objective was to evaluate the influence of various compost sources, including vermicompost at a rate of 0.5 ton·fed<sup>-1</sup> and plant residues compost at a rate of 5.0 ton·fed<sup>-1</sup>, as main plots. Subplots were established by applying agricultural gypsum, both in the presence and absence of gypsum requirements. Additionally, sub-subplots were created by externally applying cobalt at a rate of 10.0 mg·L<sup>-1</sup>, with one sub-subplot receiving foliar cobalt application and the other not. The trial sought to assess the growth performance, chemical composition, enzymatic antioxidants, yield, and quality of cabbage plants (Brassica oleracea var. capitata L.) cultivated in saline soil. According to the findings, cabbage plants exhibited the most favorable response in terms of plant height, chlorophyll content, carotene levels, leaf area, nitrogen (N), phosphorus (P), potassium (K), head yield, vitamin C, and total dissolved solids (TDS) when treated with vermicompost, followed by plant compost. Conversely, plants grown without compost exhibited the least improvement in performance. Cabbage treated with agricultural gypsum requirements showed better performance than those without gypsum amendment. Moreover, plants subjected to cobalt spray demonstrated the highest growth, yield, and quality parameters compared to those without cobalt foliar application. In contrast, the control group (plants without the studied treatments) displayed the highest levels of enzymatic antioxidants, specifically catalase and peroxidase. This indicates that soil salinity stress led to an increase in catalase and peroxidase production in cabbage plants as a defense against the harmful impact of reactive oxygen species (ROS) resulting from soil salinity stress. The applied treatments (compost, gypsum, and cobalt) led to a reduction in the cabbage plant’s inherent production of catalase and peroxidase. Generally, the combined treatment of vermicompost × gypsum requirements × cobalt proved effective in mitigating the detrimental effects of soil salinity on cabbage plants. These findings hold significance for farmers and policymakers aiming to enhance agricultural productivity in regions affected by soil salinity. Additionally, further research can explore the long-term effects of these treatments on soil health and crop sustainability. 展开更多
关键词 VERMIcompost Plant compost Gypsum Requirements COBALT soil Health and Crop Sustainability
下载PDF
Potato absorption and phytoavailability of Cd, Ni, Cu, Zn and Pb in sierozem soils amended with municipal sludge compost 被引量:4
5
作者 LIU Zheng NAN Zhongren +1 位作者 ZHAO Chuanyan YANG Yang 《Journal of Arid Land》 SCIE CSCD 2018年第4期638-652,共15页
Effects of sludge utilization on the mobility and phytoavailability of heavy metals in soil-plant systems have attracted broad attention in recent years. In this study, we analyzed the effects of municipal sludge comp... Effects of sludge utilization on the mobility and phytoavailability of heavy metals in soil-plant systems have attracted broad attention in recent years. In this study, we analyzed the effects of municipal sludge compost (MSC) on the solubility and pIant uptake of Cd, Ni, Cu, Zn and Pb in a soil-potato system to explore the mobility, potato plant uptake and enrichment of these five heavy metals in sierozem soils amended with MSC through a potato cultivation trial in Lanzhou University of China in 2014. Ridge regression analysis was conducted to investigate the phytoavailability of heavy metals in amended soils. Furthermore, CaC12, CH3COONH4, CH3COOH, diethylene triamine pentacetic acid (DTPA) and ethylene diamJne tetraacetic acid (EDTA) were used to extract the labile fraction of heavy metals from the amended soils. The results show that the MSC could not only improve the fertility but also increase the dissolved organic carbon (DOC) content of sierozem soils. The total concentrations and labile fraction proportions of heavy metals increase with increasing MSC percentage in sierozem soils. In amended soils, Cd has the highest solubility and mobility while Ni has the lowest solubility and mobility among the five heavy metals. The MSC increases the concentrations of heavy metals in the root, stem, peel and tuber of the potato plant, with the concentrations being much higher in the stem and root than in the peel and tuber. Among the five heavy metals, the bioconcentration factor value of Cd is the highest, while that of Ni is the lowest. The complexing agent (DTPA and EDTA) extractable fractions of heavy metals are the highest in terms of phytoavailability. Soil properties (including organic matter, pH and DOC) have important impacts on the phytoavailability of heavy metals. Our results suggest that in soil-potato systems, although the MSC may improve soil fertility, it can also increase the risk of soils exposed to heavy metals. 展开更多
关键词 municipal sludge compost amended soils heavy metals MOBILITY ridge regression PHYTOAVAILABILITY
下载PDF
Assessment of Long-Term Compost Application on Physical, Chemical, and Biological Properties, as Well as Fertility, of Soil in a Field Subjected to Double Cropping 被引量:5
6
作者 Yukiko Yanagi Haruo Shindo 《Agricultural Sciences》 2016年第1期30-43,共14页
The aim of this article was to assess the influence of long-term application of compost on the physical, chemical, and biological properties, as well as the fertility, of soil in a field subjected to double cropping (... The aim of this article was to assess the influence of long-term application of compost on the physical, chemical, and biological properties, as well as the fertility, of soil in a field subjected to double cropping (paddy rice and barley), mainly by integrating previous studies of the effects of compost and manure on soil qualities. Continuous compost application, especially at a high level (30 Mg·ha<sup>-1</sup>·y<sup>-1</sup>), into the double cropping soils increased the activities of organic C-, N-, and P-decomposing enzymes and the contents of organic C, total N, and microbial biomass N, as well as the cation exchange capacity, thereby contributing to the enhancement of soil fertility. Also, the compost application increased the degree of water-stable soil macroaggregation (>0.25 mm), which was correlated significantly (r > 0.950, p < 0.05) with the contents of hydrolyzable carbohydrates (with negative charge) and active Al (with positive charge), and resulted in the modification of soil physical properties. Furthermore, the application increased the amount of soil organic matter, including humic acid with a low degree of darkening and fulvic acid, and contributed to C sequestration and storage. Physical fractionation of soil indicated that about 60% of soil organic C was distributed in the silt-sized (2 - 20 μm) aggregate and clay-sized (<2 μm) aggregate fractions, while about 30% existed in the decayed plant fractions (53 - 2000 μm). The results obtained unambiguously indicate that long-term application of compost can improve soil qualities in the field subjected to double cropping, depending on the amount applied. 展开更多
关键词 Beneficial Effect Double Cropping soil Long-Term compost Application soil Quality
下载PDF
Compost of Different Stability Affects the Molecular Composition and Mineralization of Soil Organic Matter 被引量:1
7
作者 Bekele Eshetu Christel Baum Peter Leinweber 《Open Journal of Soil Science》 2013年第1期58-69,共12页
This study investigated the C mineralization and chemical modification of a typical tropical soil amended with regional compost of different stability. Compost samples were produced from coffee pulp and fruit and vege... This study investigated the C mineralization and chemical modification of a typical tropical soil amended with regional compost of different stability. Compost samples were produced from coffee pulp and fruit and vegetable waste in a method of small heap composting and the samples were collected in three different phases of composting. Both the fresh waste and compost samples were analyzed for their phytotoxicity. These samples were added to a tropical Nitisol at the rate of 48 t ha?1 and a control was set up without amendment. The CO2-C respired was determined during 98 days of incubation and the incubated samples were taken at the start and end of incubation for molecular-chemical analysis by Pyrolysis-Field Ionization Mass Spectrometry (Py-FIMS). The fresh waste yielded a germination index (GI) 100%). The CO2-C respired was best explained by a first order plus linear model. A soil amended with a compost taken at the thermophilic phase attained the lowest overall organic C loss. In general, the Py-FIMS revealed a significant enrichment of stable N-compounds during the incubation in all amended soils compared to the control. Furthermore, among the compost-soil mixtures Py-FIMS indicated significantly higher increases in the proportions of carbohydrates, peptides and phenols/lignin monomers at the expense of fatty acids and sterols in soil amended with composts from the thermophilic phase. Thermal volatilization curves of Py-FIMS indicated enrichments of stable N-compounds and peptides in compost amended soil. This was a result of enhanced decomposition and stabilization of decomposition products by physical protection through association with clay and soil aggregates. In summary, application of compost shortly after reaching the high temperature phase was shown to be more efficient in organic C sequestration in a clay-rich tropical agricultural soil than mature composts. 展开更多
关键词 compost soil Organic Matter soil RESPIRATION soil Carbon SEQUESTRATION Pyrolysis-Field Ionization Mass Spectrometry Molecular Composition
下载PDF
Effects of different levels of compost application on amounts and distribution of organic nitrogen forms in soil particle size fractions subjected mainly to double cropping 被引量:7
8
作者 Thu Ha Nguyen Haruo Shindo 《Agricultural Sciences》 2011年第3期213-219,共7页
Effects of different levels of compost application on the amounts and percentage distribution of organic N forms in whole soils and particle size fractions were investigated. Soil samples were collected from three plo... Effects of different levels of compost application on the amounts and percentage distribution of organic N forms in whole soils and particle size fractions were investigated. Soil samples were collected from three plots: (a) F, only chemical fertilizers;(b) F+LC, chemical fertilizers plus low level of compost;(c) F+HC, chemical fertilizers plus high level of compost. Each soil sample was divided into five fractions: coarse sand-sized aggregate (CSA), medium sand-sized aggregate (MSA), fine sand-sized aggregate (FSA), silt-sized aggregate (SIA) and clay-sized aggregate (CLA) fractions. The sand fractions were subdivided into decayed plants (DP) and mineral particles (MP). The amounts of total N and different organic N forms in the whole soils as well as size fractions generally increased with increasing the amount of compost. In the whole soils, percentage distribution of non-hydrolysable-N and amino sugar-N increased by compost application while the distribution values of the hydrolysable ammonium- N and unidentified-N decreased. The application did not affect the distribution degree of amino acid-N. In the size fractions, the distribution values of most organic N forms increased in the CSA-DP, MSA-DP and FSA-DP fractions by compost application. In the CLA fractions, the amounts and percentage distribution of organic N forms were the highest, although the application caused decreases in their distribution values. These findings indicate that the CLA fraction merit close attention as an important reservoir of various organic N. 展开更多
关键词 compost APPLICATION UPLAND and PADDY Fields soil Organic N FORMS Size FRACTIONS
下载PDF
Compost Improves Urban Soil and Water Quality
9
作者 Sally D. Logsdon Pat A. Sauer Martin J. Shipitalo 《Journal of Water Resource and Protection》 2017年第4期345-357,共13页
Construction in urban zones compacts the soil, which hinders root growth and infiltration and may increase erosion and degrade water quality. The purpose of our study was to determine whether planting prairie grasses ... Construction in urban zones compacts the soil, which hinders root growth and infiltration and may increase erosion and degrade water quality. The purpose of our study was to determine whether planting prairie grasses and adding compost to urban soils should partially mitigate these concerns. We simulated construction activities by removing the topsoil, and compacting the soil by repeatedly driving over it with a tractor. Additionally, treatments included three compost application methods (compost and aeration, rototill and compost, surface compost). Plots were subjected to simulated rainfall applied using overhead sprinklers at a rate of 65 or 72 mm·h-1. Bulk density was significantly reduced in surface soil where compost had been added. Compost plus prairie grasses resulted in significantly faster infiltration (63 vs. 52 mm·h-1), slower runoff (4 vs. 25 mm·h-2), less soil loss (25 vs. 119 kg·Ha-1&#183h-1), and reduced loss of ortho P (57 vs. 410 g·Ha-1) compared to plots planted with bluegrass (Poa pratensis L.). A 5 to 7.5 cm thick compost blanket reduced time to runoff (60 min) compared to no compost addition (9 min). Topsoil addition without compost did not develop dark surface soil. Compost additions are recommended to reduce negative effects of urban compaction. Over time, the depth of compost additions decreased, necessitating further additions. 展开更多
关键词 Degraded soil compost RAINFALL SIMULATOR soil Quality
下载PDF
Study on Kailyard soil amendment by adding compost of sludge
10
作者 Shaoqi ZHOU Weidong LU 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期252-253,共2页
关键词 生物治疗 土壤化学 淤泥 土壤生物
下载PDF
The Ecological Value and Feasibility of Composting Technology for Garden Soil Improvement 被引量:1
11
作者 ZHANG Fengxiang WANG Xiaoqiong +2 位作者 LIU Huiqin QIU Jinlai WANG Yunhui 《Journal of Landscape Research》 2020年第1期6-8,共3页
Soil quality of garden plants is an important factor for good growth of garden plants.Based on the analysis of the current situation of garden soil,the ecological value and feasibility of composting technology applied... Soil quality of garden plants is an important factor for good growth of garden plants.Based on the analysis of the current situation of garden soil,the ecological value and feasibility of composting technology applied in garden soil improvement were discussed.This study provided a basis for strengthening the quality management of garden soil,improving the standard of garden soil improvement,and helping the healthy and sustainable development of modern garden greening. 展开更多
关键词 composting technology Garden soil IMPROVEMENT
下载PDF
Effect of Arbuscular Mycorrhiza Fungal Inoculation with Compost on Yield and Phosphorous Uptake of Berseem in Alkaline Calcareous Soil 被引量:1
12
作者 Bismillah Jan Amjad Ali +3 位作者 Fazli Wahid Syed Noor Muhammad Shah Asif Khan Farmanullah Khan 《American Journal of Plant Sciences》 2014年第9期1359-1369,共11页
An experiment was conducted in pots under natural conditions in alkaline calcareous soil to determine berseem (Trifolium alexandrium) yield and P uptake as affected by Arbuscular mycorrhizal fungi (AMF) inoculation wi... An experiment was conducted in pots under natural conditions in alkaline calcareous soil to determine berseem (Trifolium alexandrium) yield and P uptake as affected by Arbuscular mycorrhizal fungi (AMF) inoculation with compost prepared from fresh animal dung and rock phosphate. Data indicated that berseem shoot and roots yields increased significantly (P ≤ 0.05) by inoculation of indigenous mycorrhiza (AMF-I) and half dose of compost. Shoot yield increased as 98% and 76% roots yield as 60% and 52% over control and N and K fertilizers. Maximum and significantly (P ≤ 0.05) increased plant N and P uptake by berseem was observed in the treatment inoculated by commercial mycorrhiza (AMF-II) with full dose of compost followed by the inoculation of AMF-II with half dose of compost. Plants uptake of Cu, Mn and Fe was improved significantly (P ≤ 0.05) by the inoculation of AMF-II with half dose of compost, while Zn uptake was increased in the treatment of AMF-II inoculation with full dose of compost. Maximum and significantly (P ≤ 0.05) increased soil spores density of AMF as 27 spores per 20 g soil was noted by inoculation of AMF-I with half dose of compost, while maximum roots infection intensity in berseem was observed by the inoculation of AMF-I with full dose of compost. Results suggest that inoculation of AMF with compost has potential to improve berseem yields and plants nutrients uptake under given soil conditions. 展开更多
关键词 AMF Inoculation ALKALINE CALCAREOUS soil Berseem Crop compost Plants Nutrients UPTAKE and YIELD
下载PDF
Health Risk Assessment of Compost-Amended Soils
13
作者 Hamidatu S. Darimani Ryusei Ito 《Journal of Agricultural Chemistry and Environment》 2020年第2期59-72,共14页
Application of improperly treated compost from composting toilet is one of the causes of bacterial contamination in the field, crops, food and water. The study characterized the die-off represented by kinetic inactiva... Application of improperly treated compost from composting toilet is one of the causes of bacterial contamination in the field, crops, food and water. The study characterized the die-off represented by kinetic inactivation rate coefficient, k (h-1) of Enterococcus in clay and sandy loam soils, determined the effect of temperature, compost-to-soil ratio and soil type on the inactivation rates of Enterococcus and evaluated the health risk associated with the amendment of compost from composting toilet in real conditions using local climatic data. The soils were amended with compost to soil ratios of 1:10, 1:25, 1:50 and 1:100 held at different temperatures (30&#176C, 40&#176C and 50&#176C). Inactivation of Enterococcus (pathogenic bacteria) in the soil with high temperature under different compost application rates was tried in the laboratory test and the Quantitative Microbial Health Risk evaluated. The study results indicated the inactivation rates of Enterococcus in clay soils as 0.015 - 0.027 h-1, 0.246 - 0.322 h-1, 0.397 - 0.571 h-1 whilst sandy loam soils recorded 0.056 - 0.130 h-1, 0.348 - 0.447 h-1 and 0.475 - 0.630 h-1 for 30&#176C, 40&#176C and 50&#176C respectively. Inactivation rates of Enterococcus in soils amended with compost from the composting toilet depended on temperature and soil type but not on the compost-to-soil ratios and compost from the composting toilet amended to the soils is safe for use in six (6) days. 展开更多
关键词 RISK Assessment ENTEROCOCCUS compostING TOILET soil System INACTIVATION Rate COEFFICIENT
下载PDF
Soil Moisture Retention on the High Plains of North America via Compost Amendments: A Longitudinal Field Study
14
作者 Wright Jerome Kenner Scott Lingwall Bret 《Open Journal of Soil Science》 CAS 2022年第7期295-322,共28页
Water is a finite but vital resource, and the volume of water used in arid and semi-arid regions must be managed to its fullest and best use. Irrigation water is approximately 37% of the total water used in the United... Water is a finite but vital resource, and the volume of water used in arid and semi-arid regions must be managed to its fullest and best use. Irrigation water is approximately 37% of the total water used in the United States by volume annually. Thus, this area of water use is critical for local and national water conservation. Irrigation is primarily used to increase soil water content above that which precipitation can supply. Soil structure and associated effects on drainage and evapotranspiration, however, largely control soil water content, no matter the amount of applied water. Therefore, improving soil structure to hold more water decreases the amount of water needed for irrigation, which frees that water for other uses. In this paper, organic compost amendments are studied to determine the change in soil structure and accompanying improvements in soil water content over a 4-year period. A uniform field site was selected for this research in the high plains of South Dakota, where irrigation water was available for crop growth. The test site was divided into two equal area fields;one without compost and a field with compost amendments added to 20 cm depth. Compost was incorporated into the treated field at rates of 5% and 10% by weight. Both fields received the same tillage, seed, fertilizer, weather and irrigation. Weekly to monthly in-situ water content measurements from both fields were recorded at the surface and the depths of 20, 40 and 60 cm from 2017 to 2020. Precipitation and applied irrigation water were recorded at the site. No irrigation occurred in 2019 and 2020, and moisture content was dependent on natural precipitation in those years. Results of water content and soil structure show significant differences in the water contents of the soils with the compost amendments compared to baseline, with higher compost content resulting in higher water contents without the soil becoming over-saturated. These results were consistent at all depths and across all growing seasons. This work demonstrates the efficacy of compost soil amendments in regulating soil moisture, which has profound impacts on crop yields, topsoil erosion losses, carbon sequestration, and water conservation. 展开更多
关键词 Water Content compost Amended soil soil Structure
下载PDF
Effect of Casuarina Crushed Nodules, Rhizospheric Soil and Leaves Compost on Salt Tolerance of <i>Casuarina equisetifolia</i>L. and <i>Casuarina obesa</i>Miq.
15
作者 Marie Claver Ndébane Ngom Pape Ibrahima Djighaly +6 位作者 Nathalie Diagne Maty Ndour Ganna Ndong Daouda Ngom Mariama Ngom Saliou Ngom Sergio Svistoonoff 《Open Journal of Soil Science》 2020年第9期359-373,共15页
<p align="justify"> <span style="font-family:Verdana;">Soil salinization is one of the major causes of land degradation. In Senegal, this phenomenon continues to grow, making soils unsu... <p align="justify"> <span style="font-family:Verdana;">Soil salinization is one of the major causes of land degradation. In Senegal, this phenomenon continues to grow, making soils unsuitable for agriculture. To rehabilitate salty lands, one of the recommended strategies is the use of salt-tolerant plants. Among them, plants of </span><i><i><span style="font-family:Verdana;">Casuarinaceae</span></i></i><span style="font-family:Verdana;"> family form a relationship with symbiotic microorganisms such as arbuscular mycorrhizal fungi and nitrogen fixing bacteria. It has been shown that symbiotic microorganisms play an important role in the establishment of tolerant plants in saline conditions (Djighaly </span><i><i><span style="font-family:Verdana;">et al</span></i></i><span style="font-family:Verdana;">., 2018). They improve plant performance and reduce transplant shock under salt stress conditions (Diagne </span><i><i><span style="font-family:Verdana;">et al</span></i></i><span style="font-family:Verdana;">., 2014). These microorganisms can be used as biofertilizers. However, inocula containing symbiotic microorganisms are either too expensive or unavailable in many developing countries. The aim of this study is to test alternatively affordable and low-tech solutions to promote symbiotic interactions such as Casuarina crushed nodule, Casuarina rhizosphere soil and Casuarina leaves compost that may contain symbiotic microorganisms and also nutrients such as N and phosphorus. Two species of Casuarina (</span><i><i><span style="font-family:Verdana;">Casuarina equisetifolia</span></i></i><span style="font-family:Verdana;"> L. and </span><i><i><span style="font-family:Verdana;">Casuarina obesa</span></i></i><span style="font-family:Verdana;"> Miq.) were grown in the greenhouse on sterile soil to which an amendment was added (Casuarina crushed nodules, Casuarina Rhizospheric soil or Casuarina leaves compost). Plants were subjected to saline stress. After four months of cultivation, they were harvested and morphological and physiological parameters were determined. Results showed that inoculation with Casuarina crushed nodules, Casuarina rhizospheric soil and Casuarina leaves compost improved growth, total dry biomass, total chlorophyll and proline contents of </span><i><i><span style="font-family:Verdana;">C. equisetifolia</span></i></i><span style="font-family:Verdana;"> and </span><i><i><span style="font-family:Verdana;">C. obesa</span></i></i><span style="font-family:Verdana;"> plants in salt stress condition. These positive effects were more important in </span><i><i><span style="font-family:Verdana;">C. obesa</span></i></i><span style="font-family:Verdana;"> plants amended with Casuarina leaves compost. This study shows that Casuarina leaves compost can play an important role in the rehabilitation of saline soils by improving Casuarina trees performance in saline conditions.</span> </p> 展开更多
关键词 Frugal Innovation Rehabilitation of Salty Lands CASUARINA compost Crushed Nodules Rhizospheric soil
下载PDF
Utilization of Compost as a Soil Amendment to Increase Soil Health and to Improve Crop Yields
16
作者 Jerome Wright Scott Kenner Bret Lingwall 《Open Journal of Soil Science》 2022年第6期216-224,共9页
Compost amendments have remarkable potential for improving soil structure, porosity and water holding capacity. Soil health is the ability to function as a living system, to sustain plant and animal productivity, to e... Compost amendments have remarkable potential for improving soil structure, porosity and water holding capacity. Soil health is the ability to function as a living system, to sustain plant and animal productivity, to enhance water and air quality, and to promote plant and animal health. Soil health can be estimated by measuring the total living microbial biomass, retained carbon, odor, and texture. Poor or deteriorating soil health is threatening food security. The potential for compost to reverse these negative trends is transformative if means and methods for large scale composting and compost amendments can be developed. A field-scale compost soil amendment project was implemented in Rapid City, South Dakota. The compost was added to a soil plot at 5 wt% and 10 wt% and the results were compared with an adjacent untreated plot without any compost addition. Measurements of soil health characteristics indicate that compost amendments improve soil health, crop yields, and soil water content. Treating soils with compost has the potential to reverse global deteriorating soil health. 展开更多
关键词 compost Crop Yields soil Health Food Security
下载PDF
Profit Analysis by Soil Carbon Sequestration with Different Composts and Cooperated with Biochar during Corn (Zea mays) Cultivation Periods in Sandy Loam Soil
17
作者 Joung Du Shin Yong-Su Choi Jae-Hoon Shin 《Journal of Agricultural Chemistry and Environment》 2016年第3期107-112,共7页
Despite the ability of biochar to enhance soil fertility and to sequester soil carbon, its potential reduction of green house gas emissions and profit analysis with different organic composts and cooperated with bioch... Despite the ability of biochar to enhance soil fertility and to sequester soil carbon, its potential reduction of green house gas emissions and profit analysis with different organic composts and cooperated with biochar for crop cultivation have been a few evaluated. This study was conducted to estimate their greenhouse gas emission reduction and profit analysis by soil carbon sequestration with different organic composts and cooperated with biochar application during corn cultivation periods. For the experiment, the treatments were consisted of aerobic digestate of swine wastes (AD), pig compost as the control (PC), cow compost (CC) and pig compost cooperated with 1% biochar (PC + 1% biochar). The soil texture used in this study was sandy loam, and application rates of chemical fertilizer were 190-39-221 kg·ha<sup>-1</sup> (N-P<sub>2</sub>O<sub>5</sub>-K<sub>2</sub>O) as recommended amount after soil test. The soil samples were periodically taken at every 15 day intervals during the experimental periods. It was observed that soil carbon sequestration by AD, CC and PC + 1% biochar application was estimated to be 429 kg·ha<sup>-1</sup>, 2366 kg·ha<sup>-1</sup>, and 3978 kg·ha<sup>-1</sup>, and their CO<sub>2</sub>-e emission reductions were estimated to be 0.16 tones for AD, 0.87 tones for CC, and 14.58 tones for PC + 1% biochar per hectar for corn cultivation periods. Their profits were estimated at $14.58 for lowest and $451.90 for highest. In Korea Climate Exchange, it was estimated to be $115.20 per hectar of corn cultivation with PC + 1% biochar. So, the price of CO<sub>2</sub> per hectar for corn cultivation with PC + 1% biochar was high at 16.8 times relative to cow compost treatment only. For the plant growth response, it was observed that plant height and fresh ear yield were not significantly different among the treatments. Therefore, these experimental results might be fundamental data for assuming a carbon trading mechanism exists for biochar soil application in agricultural practices. 展开更多
关键词 BIOCHAR Greenhouse Gas Emission Mitigation soil Carbon Sequestration compost
下载PDF
Effect of Application of Vermicompost and Conventional Compost Derived from Different Residues on Pea Crop Production and Soil Faunal Diversity in Agricultural System in Garhwal Himalayas India
18
作者 Tunira Bhadauria Pradeep Kumar +1 位作者 Rakesh Maikhuri Krishan Gopal Saxena 《Natural Science》 2014年第6期433-446,共14页
Sedentary crop-livestock mixed farming is the predominant agricultural land use in Central Himalaya upland and largely rainfed;agrochemicals are not used at all. Farmers focus on increasing yields with poor soil ferti... Sedentary crop-livestock mixed farming is the predominant agricultural land use in Central Himalaya upland and largely rainfed;agrochemicals are not used at all. Farmers focus on increasing yields with poor soil fertility management practices resulted in sharp decline in production of pea crop in the study site. Therefore in present study options are being looked into devising some conservation strategies that increase yields of pea while reducing harm to soil biodiversity at a local scale here. The present study explores the efficiency of P. excavatus as endemic earthworm species for vermicomposting, the potential utilization of Conventional oak based farmyard manure (FM-O);Conventional pine based farmyard manure(FM-P);Earthworm fed ? Cow dung + oak leaves based vermicompost (VC-O);Earthworm fed ? Cow dung + pine leaves based vermicompost (VC-P);freshly fallen leaf litter (LM) on pea crop productivity and soil faunal diversity in agricultural system, and if the changed soil faunal biodiversity scenario in any way affected the crop production. The higher uptake of nitrogen, higher germination percentage enhanced seedling growth, early emergence flower, increase number of pods, seed, husk , and root biomass was significantly higher in plants which received VC-O followed by VC-P as manure input treatments. The change in the diversity of soil micro arthropods in relation to quality change in organic residues input in experimental plots and expressed as the Simpsons diversity index showed that the diversity of soil fauna is related to improvements in soil conditions resulting from nutrient manipulations through vermicompost and conventional compost treatments. This response of soil biota to increased production most likely represents an increase in the availability of resources through addition of vermicompost when compared to other compost treatments. Alternatively, an increase in predators and therefore predation, could, increase the diversity of its prey, thereby decreasing dominant competitors and reducing the possibility of competitive exclusion, but this needs further studies. Chronosequence study during cropping season indicated that the composition and abundance of soil fauna in agricultural fields changed considerably with time under cultivation. This technology has now been adopted by the farmers in the area once again for growing the pea crop. 展开更多
关键词 HIMALAYAS Crop-Livestock Mixed Farming VERMIcompost CONVENTIONAL compostS PEA Crop Production Cropping Pattern soil Faunal DIVERSITY
下载PDF
Effect of Arbuscular Mycorrhiza Fungal Inoculation with Compost on Yield and P Uptake of Wheat in Alkaline Calcareous Soil
19
作者 Bismillah Jan Muhammad Sharif +1 位作者 Farmanullah Khan Jehan Bakht 《American Journal of Plant Sciences》 2014年第13期1995-2004,共10页
An experiment was conducted in pots under natural conditions in alkaline calcareous soil to determine wheat (Triticum aestivum L. c.v. Atta Habib) yield and P uptake as influenced by Arbuscular mycorrhizal fungi (AMF)... An experiment was conducted in pots under natural conditions in alkaline calcareous soil to determine wheat (Triticum aestivum L. c.v. Atta Habib) yield and P uptake as influenced by Arbuscular mycorrhizal fungi (AMF) inoculation with compost prepared from fresh animal dung and rock phosphate. Data indicated that wheat grain, shoot and roots yields increased significantly (P ≤ 0.05) by inoculation of commercial mycorrhiza (AMF-II) and half dose of compost. Grain yield increased by 43% and 37%, shoot by 43% and 39% and roots yield by 51% and 45% over control of N and K fertilizers. Straw yield was maximum as 5075 kg·ha-1 in the treatment of AMF-II inoculation with full dose of compost, which was significantly (P ≤ 0.05) higher as 44% and 40% over control of N and K fertilizers. Maximum and significantly (P ≤ 0.05) higher plant N and P uptake by wheat were observed in the treatment inoculated by indigenous mycorrhiza (AMF-I) with full dose of compost followed by the inoculation of AMF-II with full dose of compost and SSP treatment. Maximum and significantly (P ≤ 0.05) increased soil spores’ density of AMF by 26 spores per 20 g soil with maximum roots infection intensity in wheat were observed by the inoculation of AMF-I with full dose of compost. The AMF-II is slightly better than AMF-I regarding grain, shoot and root yield, whereas AMF-I is better in N, P uptake, soil spore density and their root infection intensity than AMF-II. Alone inoculation and compost application increase the yield and nutrients uptake but the highest improvement was observed with inoculation of AMF with compost. Results suggest that inoculation of AMF with compost has potential to improve wheat yields and plants’ P uptake under given soil conditions. 展开更多
关键词 AMF Inoculation compost YIELD Phosphorus Uptake WHEAT Crop and ALKALINE CALCAREOUS soil
下载PDF
Pig Compost Use on Zinc and Copper Concentrations in Soils and Corn Plants
20
作者 Juan Hirzel Ingrid Walter 《American Journal of Plant Sciences》 2015年第4期524-536,共13页
The use of pig compost (PC) in agricultural land has increased in Chile in the last years. This organic amendment is a valuable nutritional source for crops, but its applying must be done in a controlled manner since ... The use of pig compost (PC) in agricultural land has increased in Chile in the last years. This organic amendment is a valuable nutritional source for crops, but its applying must be done in a controlled manner since it exhibited high copper (Cu) and zinc (Zn) concentrations. A short-term field experiment was conducted out to study the effects of increasing PC rates on the production and quality corn crop in two soils located at south central Chile. Five treatments were evaluated: control without fertilization (C), conventional fertilization (CF) (350 kg N ha-1), and three increasing PC rates (15.33, 30.65, and 61.31 Mg&middotha-1, corresponding to 350, 700, and 1400 kg N ha-1, respectively) in a split plot design with four replicates. The overall results indicated that dry matter production, grain yield, and plant Zn and Cu concentrations were similar among fertilization sources and rates. Extractable soil Zn concentration exhibited a rate-related increase of PC in both locations, while Cu concentration exhibited this behavior only at the soil located in Chillan. Nevertheless, the values obtained were below of those considered phytotoxic levels. Therefore, the contribution of Zn and Cu through PC applying at different rates to the soils studied showed a slight affect in soil extractable Zn and Cu values without negatively effects on quantity and quality corn crop. The organic amendment applied can be a good and cheaper substitute to conventional fertilization, although further monitoring of Zn and Cu soil levels should be carried out to avoid any environmental risk. 展开更多
关键词 PIG compost CORN Crop ZINC and COPPER in Plant Extractable soil ZINC and COPPER
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部