In this work,a new treatment method combining ultrasonic vibration with FeCoNiCrCu high entropy alloy(HEA)coating was used to prepared Al/Mg bimetal through the lost foam compound casting.The effects of composite trea...In this work,a new treatment method combining ultrasonic vibration with FeCoNiCrCu high entropy alloy(HEA)coating was used to prepared Al/Mg bimetal through the lost foam compound casting.The effects of composite treatment involving ultrasonic vibration and HEA coating on interfacial microstructure and mechanical properties of Al/Mg bimetal were studied.Results demonstrate that the interface thickness of the Al/Mg bimetal with composite treatment significantly decreases to only 26.99%of the thickness observed in the untreated Al/Mg bimetal.The HEA coating hinders the diffusion between Al and Mg,resulting the significant reduction in Al/Mg intermetallic compounds in the interface.The Al/Mg bimetal interface with composite treatment is composed of Al_(3)Mg_(2)and Mg_(2)Si/AlxFeCoNiCrCu+FeCoNiCrCu/δ-Mg+Al_(12)Mg_(17)eutectic structures.The interface resulting from the composite treatment has a lower hardness than that without treatment.The acoustic cavitation and acoustic streaming effects generated by ultrasonic vibration promote the diffusion of Al elements within the HEA coating,resulting in a significant improvement in the metallurgical bonding quality on the Mg side.The fracture position shifts from the Mg side of the Al/Mg bimetal only with HEA coating to the Al side with composite treatment.The shear strength of the Al/Mg bimetal increases from 32.16 MPa without treatment to 63.44 MPa with ultrasonic vibration and HEA coating,increasing by 97.26%.展开更多
Mg/Al bimetal combines the advantages of both aluminum and magnesium and has broad application prospects in automotive, aerospace,weapons, digital products and so on. The compound casting has the characteristics of lo...Mg/Al bimetal combines the advantages of both aluminum and magnesium and has broad application prospects in automotive, aerospace,weapons, digital products and so on. The compound casting has the characteristics of low cost, easy to achieve metallurgical combination and suitable for the preparation of complex bimetallic parts. However, bimetallic joint strength is low due to differences of physical properties between Al and Mg, oxide film on metallic surface and interfacial Al-Mg IMCs, which is closely related to the interfacial microstructure and properties. Therefore, how to control the interface of the bimetal to achieve performance enhancement is the focus and difficulty in this field. At present, there are mainly the following strengthening methods. First, the “zincate galvanizing” and “electrolytic polishing+anodic oxidation” technology were exert on the surface of Al alloy to remove and break the oxide film, which improved the wettability between Al and Mg. Second, the undesirable Al-Mg IMCs were reduce or elimination by adding the interlayers(Zn, Ni and Ni-Cu). Thirdly, the evolution process of interfacial microstructure was changed and fine strengthening phases were formed by adding Si element to Al alloy or rare earth element to Mg alloy. Fourthly, mechanical vibration and ultrasonic vibration were applied in the process of the filling and solidification to refine and homogenize the interfacial structure. Finally, some other methods, including secondary rolling, thermal modification, heat treatment and constructing exterior 3D morphology, also can be used to regulate the interfacial microstructure and compositions. The above strengthening methods can be used alone or in combination to achieve bimetallic strengthening. Finally, the future development direction of the Mg/Al bimetal is prospected, which provides some new ideas for the development and application of the Mg/Al bimetal.展开更多
In this study,HEA/AI composite interlayer was used to fabricate Ti/Mg bimetal composites by solidliquid compound casting process.The Al layer was prepared on the surface of TC4 alloy by hot dipping,and the FeCoNiCr HE...In this study,HEA/AI composite interlayer was used to fabricate Ti/Mg bimetal composites by solidliquid compound casting process.The Al layer was prepared on the surface of TC4 alloy by hot dipping,and the FeCoNiCr HEA layer was prepared by magnetron sputtering onto the Al layer.The influence of the HEA layer thickness and pouring temperature on interface evolution was investigated based on SEM observation and thermodynamic analysis.Results indicate that the sluggish diffusion effect of HEA can effectively inhibit the interfacial diffusion between Al and Mg,which is conducive to the formation of solid solution,especially when the thickness of HEA is 800 nm.With the increase of casting temperature from 720 ℃ to 730 ℃,740℃,and 750 ℃,α-Al(Mg),α-Al(Mg)+Al3Mg2,Al3Mg2+Al12Mg17,and Al12Mg17+δ-Mg are formed at the interface of Ti/Mg bimetal,respectively.When the thickness of the HEA layer is 800 nm and the pouring temperature is 720 ℃,the bonding strength of the Ti/Mg bimetal can reach the maximum of 93.6 MPa.展开更多
A Ni-P coating was deposited on Cu substrate by electroless plating and the Al/Cu bimetal was produced by solid?liquid compound casting technology. The microstructure, mechanical properties and conductivity of Al/Cu ...A Ni-P coating was deposited on Cu substrate by electroless plating and the Al/Cu bimetal was produced by solid?liquid compound casting technology. The microstructure, mechanical properties and conductivity of Al/Cu joints with different process parameters (bonding temperature and preheating time) were investigated. The results showed that intermetallics formed at the interface and the thickness and variety increased with the increase of bonding temperature and preheating time. The Ni?P interlayer functioned as a diffusion barrier and protective film which effectively reduced the formation of intermetallics. The shear strength and conductivity of Al/Cu bimetal were reduced by increasing the thickness of intermetallics. In particular, the detrimental effect of Al2Cu phase was more obvious compared with the others. The sample preheated at 780 ℃ for 150 s exhibited the maximum shear strength and conductivity of 49.8 MPa and 5.29×10^5 S/cm, respectively.展开更多
Mg/Cu bimetal composites were prepared by compound casting method, and the microstructure evolution, phase constitution and bonding strength at the interface were investigated.It is found that a good metallurgical bon...Mg/Cu bimetal composites were prepared by compound casting method, and the microstructure evolution, phase constitution and bonding strength at the interface were investigated.It is found that a good metallurgical bonding can be achieved at the interface of Mg and Cu,which consists of two sub-layers,i.e.,layer I with 30μm on the copper side composed of Mg2Cu matrix phase, on which a small amount of dendritic MgCu2 phase was randomly distributed;layerⅡ with 140μm on the magnesium side made up of the lamellar nano-eutectic network Mg2Cu+(Mg) and a small amount of detached Mg2Cu phase. The average interfacial shear strength of the bimetal composite is measured to be 13 MPa.This study provides a new fabrication process for the application of Mg/Cu bimetal composites as the hydrogen storage materials.展开更多
The liquid-solid compound casting technology was used to produce the AZ91D/0Cr19Ni9 bimetal composite without and with hot dipping aluminium, respectively. The influences of Al coating on microstructures and mechanica...The liquid-solid compound casting technology was used to produce the AZ91D/0Cr19Ni9 bimetal composite without and with hot dipping aluminium, respectively. The influences of Al coating on microstructures and mechanical properties of AZ91D/0Cr19Ni9 interface were investigated. The results showed that the mechanical bonding was obtained between AZ91D and bare steel 0Cr19Ni9 where a gap existed at the interface; the metallurgical bonding was formed between AZ91D and Al-coated 0Cr19Ni9, which could be divided into two different intermetallic layers: layer Ⅰ was mainly composed of α-Mg+β-Mg17Al12 eutectic structure and a small amount of MgAl2O4, and layer Ⅱ mainly comprised of Fe2Al5 intermetallic compound. Furthermore, the hardness value of interface was obviously higher than that of AZ91D matrix, and the average hardness values of layers Ⅰ and Ⅱ were HV 158 and HV 493, respectively. The shear strength of AZ91D/Al-coated 0Cr19Ni9 interface was higher than that of AZ91D/bare 0Cr19Ni9 interface, which confirmed that Al coating could improve the adhesive strength between AZ91D and 0Cr19Ni9 during liquid-solid compound casting process.展开更多
To achieve Ti/Mg bimetallic composite with high strength and metallurgical bonding interface,Al interlayer and Zn/Al composite interlayer were used to prepare TC4/AZ91D bimetal composite with metallurgical bonding int...To achieve Ti/Mg bimetallic composite with high strength and metallurgical bonding interface,Al interlayer and Zn/Al composite interlayer were used to prepare TC4/AZ91D bimetal composite with metallurgical bonding interface by solid-liquid compound casting,respectively.Al interlayer was prepared on the surface of TC4 alloy by hot dipping,and Zn/Al composite interlayer was prepared by electroplating process.The results suggested that the phases across the interface were Al Ti andα(Al)+Mg_(21)(Al,Zn)_(17)when Zn/Al composite interlayer was used.When Al interlayer was used as interlayer,Al Mg Ti ternary structure and Al_(12)Mg_(17)+δ-Mg eutectic structure were the main phases at the interface.The shear strength of TC4/AZ91D bimetal with Zn/Al composite interlayer was much higher than that with pure Al interlayer,and the value of the shear strength was increased from 48.5 to 67.4 MPa.Thermodynamic models based on different compositions of the interface were established to explain the microstructure evolution of the interfacial zone.展开更多
The solid–liquid compound casting of Mg-AZ91D and Ti-TC4 alloys was developed by using pure Ni electro-deposited coating.The pouring temperatures of 660℃,690℃,720℃and 750℃were chosen to investigated the effects o...The solid–liquid compound casting of Mg-AZ91D and Ti-TC4 alloys was developed by using pure Ni electro-deposited coating.The pouring temperatures of 660℃,690℃,720℃and 750℃were chosen to investigated the effects of casting temperatures on microstructural evolution,properties,and fracture behaviors of Ni-coated TC4/AZ91D bimetals by the solid–liquid compound casting(SLCC).The scanning electron microscopy(SEM)and the energy dispersive spectroscopy(EDS)results showed that the interfacial zone mainly composed of nickel,Mg_(2)Ni and Mg-Al-Ni in the bimetals cast at 660℃.As the pouring temperature was increased to 750℃,the width of the interface zone,which mainly composed ofδ(Mg),Mg_(2)Ni,Mg-Al-Ni,Mg_(3)TiNi_(2) and Al_(3)Ni,gradually increased.The microhardness tests showed that the micro-hardness of the interface zone was smaller than that of TC4 substrate but larger than that of the cast AZ91D matrix.At the pouring temperature of 720℃,the Ni-coated TC4/AZ91D bimetals had the most typical homogeneous interface,which had granular Mg-Al-Ni ternary phase but no ribbon-like Al3Ni binary phase,and achieved the highest shear strength of 97.35MPa.Meanwhile,further fracture behavior analysis showed that most fracture failure of Ni-coated TC4/AZ91D bimetals occurred at the Mg_(2)Ni+δ(Mg)eutectic structure and Al_(3)Ni hard intermetallic.展开更多
In this paper,a Ni coating was deposited on the surface of the A356 aluminum alloy by high velocity oxygen fuel spraying to improve the performance of the AZ91D magnesium/A356 aluminum bimetal prepared by a compound c...In this paper,a Ni coating was deposited on the surface of the A356 aluminum alloy by high velocity oxygen fuel spraying to improve the performance of the AZ91D magnesium/A356 aluminum bimetal prepared by a compound casting.The effects of the Ni coating as well as its thickness on microstructure and mechanical properties of the AZ91D/A356 bimetal were systematically researched for the first time.Results demonstrated that the Ni coating and its thickness had a significant effect on the interfacial phase compositions and mechanical properties of the AZ91D/A356 bimetal.The 10μm’s Ni coating cannot prevent the generation of the Al-Mg intermetallic compounds(IMCs)at the interface zone of the AZ91D/A356 bimetal,while the Ni coating with the thickness of 45μm and 190μm can avoid the formation of the Al-Mg IMCs.When the Ni coating was 45μm,the Ni coating disappeared and transformed into Mg-Mg_(2)Ni eutectic structures+Ni_(2)Mg_(3)Al particles at the interface zone.With a thickness of 190μm’s Ni coating,part of the Ni coating remained and the interface layer was composed of the Mg-Mg_(2)Ni eutectic structures+Ni_(2)Mg_(3)Al particles,Mg_(2)Ni layer,Ni solid solution(SS)layer,Al_(3)Ni_(2) layer,Al_(3)Ni layer and sporadic Al_(3)Ni+Al-Al_(3)Ni eutectic structures from AZ91D side to A356 side in sequence.The interface layer consisting of the Mg-Ni and Al-Ni IMCs obtained with the Ni coating had an obvious lower hardness than the Al-Mg IMCs.The shear strength of the AZ91D/A356 bimetal with a Ni coating of 45μm thickness enhanced 41.4%in comparison with that of the bimetal without Ni coating,and the fracture of the bimetal with 45μm’s Ni coating occurred between the Mg matrix and the interface layer with a mixture of brittle fracture and ductile fracture.展开更多
In this work,a vibration was applied in the preparation of the Mg/Al bimetal by a novel compound casting in order to improve the mechanical properties of the Mg/Al bimetal,and the effect of the vibration on the interf...In this work,a vibration was applied in the preparation of the Mg/Al bimetal by a novel compound casting in order to improve the mechanical properties of the Mg/Al bimetal,and the effect of the vibration on the interfacial microstructure and mechanical properties of the Mg/Al bimetal was investigated.The results indicated that the vibration had a significant effect on the interfacial microstructure and mechanical properties of the Mg/Al bimetal,but it did not change the phase compositions of the interface,which was composed of layerⅠ(Al3Mg2+Mg2Si),layerⅡ(Al_(12)Mg_(17)+Mg_(2)Si)and layerⅢ(Al_(12)Mg_(17)/δ-Mg).Without vibration,the Mg_(2)Si phase with a needle-like morphology mainly aggregated in the layerⅡof the interface.After the application of the vibration,the SEM and EBSD analysis results showed that the Mg_(2)Si and Al3Mg2phases in the interface were obviously refined,and the distribution of the Mg_(2)Si became more uniform,due to the strong forced convection of the molten metal resulting from the vibration.The TEM analysis indicated that the interface between the A_(l3)Mg_(2) and Mg_(2)Si phases was non-coherent,suggesting the Mg_(2)Si particles cannot act as a heterogeneous nucleation base during the solidification process of the interface.Compared to the Mg/Al bimetal without vibration,the shear strength of the Mg/Al bimetal with vibration increased by about 50%from 31.7 MPa on average to 47.5 MPa,and the hardness of the layer I of the interface increased,and the hardness of the layerⅢdecreased.The fracture surface transformed from a flat fracture morphology without vibration to an irregular zigzag fracture morphology.展开更多
The centrifugal casting of compound HSS/nodular cast iron roll collar was studied,and the factors affecting transition zone quality were analyzed.The pouring temperature and interval in pouring are the main factors af...The centrifugal casting of compound HSS/nodular cast iron roll collar was studied,and the factors affecting transition zone quality were analyzed.The pouring temperature and interval in pouring are the main factors affecting transition zone quality.By controlling process parameter and flux adding during casting,high quality roll collar was obtained.The cause,why in the casting of HSS part,segregation appears easily,was analyzed and the countermeasure eliminating segregation was put forward,the measure eliminating heat treatment crackling was also put forward.展开更多
To improve the Al/Mg bimetallic interface,La was added into the Al/Mg bimetallic interface manufactured by a compound casting process.The effect of La addition on the microstructure,mechanical properties and fracture ...To improve the Al/Mg bimetallic interface,La was added into the Al/Mg bimetallic interface manufactured by a compound casting process.The effect of La addition on the microstructure,mechanical properties and fracture behavior of the Al/Mg bimetallic interface and the formation mechanism of the interface were studied in detail.Al_(11)La_(3),Al_(8)Mn_(4)La,Al_(20)Ti_(2)La,and other rare earth precipitates(RE precipitates)preferentially precipitated at the interface with La addition,while the number of the Al_(11)La_(3)and Al_(8)Mn_(4)La located in eutectic structure area(E area)gradually increased and aggregated in the interface with the increase of the La content.Besides,the matrix structure in different areas of the Al/Mg interface changed in different degrees,and the eutectic structure and primaryγ(Mg_(17)Al_(12))dendrites in the E area were refned,but the intermetallic compounds area(IMC area)had no obvious change.With the addition of the La,the interface was strengthened under the comprehensive effect of refnement strengthening and precipitation strengthening from the E area.When the La content increased to 1.0%,the shear strength of the Al/Mg bimetal reached the maximum of 51.54 MPa,which was 30.95%higher than the group without La addition.However,with the further increase of the La content,the large area aggregation of the Al_(11)La_(3)and Al_(8)Mn_(4)La occurred in the interface,leading to the separation of the matrix structure of the E area and the decrease of the shear strength of the Al/Mg interface.展开更多
Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al...Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al/Mg dissimilar bimetals.Magnesium melt was poured at 700 °C,with melt-to-solid volume ratios(Vm/Vs) of 1.5 and 3,into a preheated hollow aluminum cylinder.The preheating temperatures of the solid part were 320,400,and 450 °C,and the constant rotational speed was 1,600 rpm.The cast parts were kept inside the casting machine until reaching the cooling temperature of 150 °C.The result showed that an increase in preheating temperature from 320 to 450 °C led to an enhanced reaction layer thickness.In addition,an increase in the Vm/Vs from 1.5 to 3 resulted in raising the interface thickness from 1.2 to 1.8 mm.Moreover,the interface was not continuously formed when a Vm/Vs of 3 was selected.In this case,the force of contraction overcame the resultant acting force on the interface.An interface formed at the volume ratio of 1.5 was examined using scanning electron microscopy(SEM) equipped with energy-dispersive X-ray spectroscopy(EDS),and the results demonstrated the formation of Al_(3)Mg_(2),Al_(12)Mg_(17) and(δ+Al_(12)Mg_(17)) eutectic structures in the interface.展开更多
The formation mechanism of the bonding between compound cast Al/Ti bimetal during a heat treatment regime was investigated.Commercially pure Al was cast and melt on a Ti bar in a steel tube,followed by heat treatment ...The formation mechanism of the bonding between compound cast Al/Ti bimetal during a heat treatment regime was investigated.Commercially pure Al was cast and melt on a Ti bar in a steel tube,followed by heat treatment on the compound cast Ti/Al bimetal for different periods of time once the Al melt was solidified.No bonding was observed between the two metals after the initial casting,which can be attributed to the presence of oxide films on the liquid Al and solid Ti alloys and the trapped atmosphere between them.The effect of these layers in preventing the formation of bonding was eliminated after heat treating the cast part at~973 K(~700℃)for at least 15 min,and the metals started to bond with each other.A detailed description of this bonding mechanism is presented in this paper.展开更多
The objective of this work was to investigate the thermal and mechanical interactions between the two components of a compound squeeze cast macrocomposite bimetal. First, an Al/Al-4.5wt.%Cu macrocomposite bimetal was ...The objective of this work was to investigate the thermal and mechanical interactions between the two components of a compound squeeze cast macrocomposite bimetal. First, an Al/Al-4.5wt.%Cu macrocomposite bimetal was fabricated by compound squeeze casting process. Then, heat transfer, solidification and distribution of the generated stresses along the interface region of the bimetal were analyzed using Thermo-Calc, ProCAST and ANSYS softwares, and structure, copper distribution and microhardness changes across the interface of the bimetal were studied. The results showed no noticeable change in the structure of the Al-4.5wt.%Cu insert and no obvious micromixing and diffusion of copper across the interface. Simulation results were in good agreement with the experimental ones only when an equivalent oxide layer at the interface was defined and its effect on heat transfer was considered. This layer caused up to 50% decrease in local liquid fraction formed on the surface of the insert. Simulation of the generated stresses showed a uniformly distributed stress along the interface which was significantly lower than the compressive strength of the oxide layer, resulting in its good stability during the fabrication process. It was postulated that this continuous oxide layer not only acted as a thermal barrier but prevented the direct metal-metal contact along the interface as well.展开更多
The centrifugal casting of compound HSS/nodular cast iron roll collar was studied, and the factors affecting transition zone quality were analyzed. The pouring temperature and interval in pouring are the main factors ...The centrifugal casting of compound HSS/nodular cast iron roll collar was studied, and the factors affecting transition zone quality were analyzed. The pouring temperature and interval in pouring are the main factors affecting transition zone quality. By controlling process parameter and flux adding during casting, high quality roll collar was obtained. The cause, why in the casting of HSS part, segregation appears easily, was analyzed and the countermeasure eliminating segregation was put forward, the measure eliminating heat treatment crackling was also put forward.展开更多
基金funded by the National Natural Science Foundation of China(Nos.52271102,52075198 and 52205359)。
文摘In this work,a new treatment method combining ultrasonic vibration with FeCoNiCrCu high entropy alloy(HEA)coating was used to prepared Al/Mg bimetal through the lost foam compound casting.The effects of composite treatment involving ultrasonic vibration and HEA coating on interfacial microstructure and mechanical properties of Al/Mg bimetal were studied.Results demonstrate that the interface thickness of the Al/Mg bimetal with composite treatment significantly decreases to only 26.99%of the thickness observed in the untreated Al/Mg bimetal.The HEA coating hinders the diffusion between Al and Mg,resulting the significant reduction in Al/Mg intermetallic compounds in the interface.The Al/Mg bimetal interface with composite treatment is composed of Al_(3)Mg_(2)and Mg_(2)Si/AlxFeCoNiCrCu+FeCoNiCrCu/δ-Mg+Al_(12)Mg_(17)eutectic structures.The interface resulting from the composite treatment has a lower hardness than that without treatment.The acoustic cavitation and acoustic streaming effects generated by ultrasonic vibration promote the diffusion of Al elements within the HEA coating,resulting in a significant improvement in the metallurgical bonding quality on the Mg side.The fracture position shifts from the Mg side of the Al/Mg bimetal only with HEA coating to the Al side with composite treatment.The shear strength of the Al/Mg bimetal increases from 32.16 MPa without treatment to 63.44 MPa with ultrasonic vibration and HEA coating,increasing by 97.26%.
基金the supports provided by the National Natural Science Foundation of China (Grant Nos.52271102,52075198 and 52205359)the China Post-doctoral Science Foundation (Grant No.2021M691112)the Analytical and Testing Center,HUST。
文摘Mg/Al bimetal combines the advantages of both aluminum and magnesium and has broad application prospects in automotive, aerospace,weapons, digital products and so on. The compound casting has the characteristics of low cost, easy to achieve metallurgical combination and suitable for the preparation of complex bimetallic parts. However, bimetallic joint strength is low due to differences of physical properties between Al and Mg, oxide film on metallic surface and interfacial Al-Mg IMCs, which is closely related to the interfacial microstructure and properties. Therefore, how to control the interface of the bimetal to achieve performance enhancement is the focus and difficulty in this field. At present, there are mainly the following strengthening methods. First, the “zincate galvanizing” and “electrolytic polishing+anodic oxidation” technology were exert on the surface of Al alloy to remove and break the oxide film, which improved the wettability between Al and Mg. Second, the undesirable Al-Mg IMCs were reduce or elimination by adding the interlayers(Zn, Ni and Ni-Cu). Thirdly, the evolution process of interfacial microstructure was changed and fine strengthening phases were formed by adding Si element to Al alloy or rare earth element to Mg alloy. Fourthly, mechanical vibration and ultrasonic vibration were applied in the process of the filling and solidification to refine and homogenize the interfacial structure. Finally, some other methods, including secondary rolling, thermal modification, heat treatment and constructing exterior 3D morphology, also can be used to regulate the interfacial microstructure and compositions. The above strengthening methods can be used alone or in combination to achieve bimetallic strengthening. Finally, the future development direction of the Mg/Al bimetal is prospected, which provides some new ideas for the development and application of the Mg/Al bimetal.
基金financial supports from the National Natural Science Foundation of China (No. 51875062)China Postdoctoral Science Foundation (No. 2021M700567)。
文摘In this study,HEA/AI composite interlayer was used to fabricate Ti/Mg bimetal composites by solidliquid compound casting process.The Al layer was prepared on the surface of TC4 alloy by hot dipping,and the FeCoNiCr HEA layer was prepared by magnetron sputtering onto the Al layer.The influence of the HEA layer thickness and pouring temperature on interface evolution was investigated based on SEM observation and thermodynamic analysis.Results indicate that the sluggish diffusion effect of HEA can effectively inhibit the interfacial diffusion between Al and Mg,which is conducive to the formation of solid solution,especially when the thickness of HEA is 800 nm.With the increase of casting temperature from 720 ℃ to 730 ℃,740℃,and 750 ℃,α-Al(Mg),α-Al(Mg)+Al3Mg2,Al3Mg2+Al12Mg17,and Al12Mg17+δ-Mg are formed at the interface of Ti/Mg bimetal,respectively.When the thickness of the HEA layer is 800 nm and the pouring temperature is 720 ℃,the bonding strength of the Ti/Mg bimetal can reach the maximum of 93.6 MPa.
基金Project(51571080)supported by the National Natural Science Foundation of China
文摘A Ni-P coating was deposited on Cu substrate by electroless plating and the Al/Cu bimetal was produced by solid?liquid compound casting technology. The microstructure, mechanical properties and conductivity of Al/Cu joints with different process parameters (bonding temperature and preheating time) were investigated. The results showed that intermetallics formed at the interface and the thickness and variety increased with the increase of bonding temperature and preheating time. The Ni?P interlayer functioned as a diffusion barrier and protective film which effectively reduced the formation of intermetallics. The shear strength and conductivity of Al/Cu bimetal were reduced by increasing the thickness of intermetallics. In particular, the detrimental effect of Al2Cu phase was more obvious compared with the others. The sample preheated at 780 ℃ for 150 s exhibited the maximum shear strength and conductivity of 49.8 MPa and 5.29×10^5 S/cm, respectively.
基金Project(51671017)supported by the National Natural Science Foundation of ChinaProject(FRF-GF-17-B3)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project supported by the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,ChinaProject(SKLSP201835)supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU,China
文摘Mg/Cu bimetal composites were prepared by compound casting method, and the microstructure evolution, phase constitution and bonding strength at the interface were investigated.It is found that a good metallurgical bonding can be achieved at the interface of Mg and Cu,which consists of two sub-layers,i.e.,layer I with 30μm on the copper side composed of Mg2Cu matrix phase, on which a small amount of dendritic MgCu2 phase was randomly distributed;layerⅡ with 140μm on the magnesium side made up of the lamellar nano-eutectic network Mg2Cu+(Mg) and a small amount of detached Mg2Cu phase. The average interfacial shear strength of the bimetal composite is measured to be 13 MPa.This study provides a new fabrication process for the application of Mg/Cu bimetal composites as the hydrogen storage materials.
基金Project(cstc2015yykfC0001)supported by the National Engineering Research Centre for Magnesium Alloys,ChinaProject supported by State Key Laboratory of Mechanical Transmission of Chongqing University,China
文摘The liquid-solid compound casting technology was used to produce the AZ91D/0Cr19Ni9 bimetal composite without and with hot dipping aluminium, respectively. The influences of Al coating on microstructures and mechanical properties of AZ91D/0Cr19Ni9 interface were investigated. The results showed that the mechanical bonding was obtained between AZ91D and bare steel 0Cr19Ni9 where a gap existed at the interface; the metallurgical bonding was formed between AZ91D and Al-coated 0Cr19Ni9, which could be divided into two different intermetallic layers: layer Ⅰ was mainly composed of α-Mg+β-Mg17Al12 eutectic structure and a small amount of MgAl2O4, and layer Ⅱ mainly comprised of Fe2Al5 intermetallic compound. Furthermore, the hardness value of interface was obviously higher than that of AZ91D matrix, and the average hardness values of layers Ⅰ and Ⅱ were HV 158 and HV 493, respectively. The shear strength of AZ91D/Al-coated 0Cr19Ni9 interface was higher than that of AZ91D/bare 0Cr19Ni9 interface, which confirmed that Al coating could improve the adhesive strength between AZ91D and 0Cr19Ni9 during liquid-solid compound casting process.
基金the financial support from the National Natural Science Foundation of China(No.51875062)。
文摘To achieve Ti/Mg bimetallic composite with high strength and metallurgical bonding interface,Al interlayer and Zn/Al composite interlayer were used to prepare TC4/AZ91D bimetal composite with metallurgical bonding interface by solid-liquid compound casting,respectively.Al interlayer was prepared on the surface of TC4 alloy by hot dipping,and Zn/Al composite interlayer was prepared by electroplating process.The results suggested that the phases across the interface were Al Ti andα(Al)+Mg_(21)(Al,Zn)_(17)when Zn/Al composite interlayer was used.When Al interlayer was used as interlayer,Al Mg Ti ternary structure and Al_(12)Mg_(17)+δ-Mg eutectic structure were the main phases at the interface.The shear strength of TC4/AZ91D bimetal with Zn/Al composite interlayer was much higher than that with pure Al interlayer,and the value of the shear strength was increased from 48.5 to 67.4 MPa.Thermodynamic models based on different compositions of the interface were established to explain the microstructure evolution of the interfacial zone.
基金The authors would like to acknowledge the financial supports from the National Natural Science Foundation of China(No.51875062).
文摘The solid–liquid compound casting of Mg-AZ91D and Ti-TC4 alloys was developed by using pure Ni electro-deposited coating.The pouring temperatures of 660℃,690℃,720℃and 750℃were chosen to investigated the effects of casting temperatures on microstructural evolution,properties,and fracture behaviors of Ni-coated TC4/AZ91D bimetals by the solid–liquid compound casting(SLCC).The scanning electron microscopy(SEM)and the energy dispersive spectroscopy(EDS)results showed that the interfacial zone mainly composed of nickel,Mg_(2)Ni and Mg-Al-Ni in the bimetals cast at 660℃.As the pouring temperature was increased to 750℃,the width of the interface zone,which mainly composed ofδ(Mg),Mg_(2)Ni,Mg-Al-Ni,Mg_(3)TiNi_(2) and Al_(3)Ni,gradually increased.The microhardness tests showed that the micro-hardness of the interface zone was smaller than that of TC4 substrate but larger than that of the cast AZ91D matrix.At the pouring temperature of 720℃,the Ni-coated TC4/AZ91D bimetals had the most typical homogeneous interface,which had granular Mg-Al-Ni ternary phase but no ribbon-like Al3Ni binary phase,and achieved the highest shear strength of 97.35MPa.Meanwhile,further fracture behavior analysis showed that most fracture failure of Ni-coated TC4/AZ91D bimetals occurred at the Mg_(2)Ni+δ(Mg)eutectic structure and Al_(3)Ni hard intermetallic.
基金supports provided by the National Natural Science Foundation of China (No. 52075198)the National Key Research and Development Program of China (Nos. 2020YFB2008300 and 2020YFB2008304)+1 种基金the State Key Laboratory of High Performance Complex Manufacturing in CSU (No. Kfkt2019-01)the Analytical and Testing Center, HUST.
文摘In this paper,a Ni coating was deposited on the surface of the A356 aluminum alloy by high velocity oxygen fuel spraying to improve the performance of the AZ91D magnesium/A356 aluminum bimetal prepared by a compound casting.The effects of the Ni coating as well as its thickness on microstructure and mechanical properties of the AZ91D/A356 bimetal were systematically researched for the first time.Results demonstrated that the Ni coating and its thickness had a significant effect on the interfacial phase compositions and mechanical properties of the AZ91D/A356 bimetal.The 10μm’s Ni coating cannot prevent the generation of the Al-Mg intermetallic compounds(IMCs)at the interface zone of the AZ91D/A356 bimetal,while the Ni coating with the thickness of 45μm and 190μm can avoid the formation of the Al-Mg IMCs.When the Ni coating was 45μm,the Ni coating disappeared and transformed into Mg-Mg_(2)Ni eutectic structures+Ni_(2)Mg_(3)Al particles at the interface zone.With a thickness of 190μm’s Ni coating,part of the Ni coating remained and the interface layer was composed of the Mg-Mg_(2)Ni eutectic structures+Ni_(2)Mg_(3)Al particles,Mg_(2)Ni layer,Ni solid solution(SS)layer,Al_(3)Ni_(2) layer,Al_(3)Ni layer and sporadic Al_(3)Ni+Al-Al_(3)Ni eutectic structures from AZ91D side to A356 side in sequence.The interface layer consisting of the Mg-Ni and Al-Ni IMCs obtained with the Ni coating had an obvious lower hardness than the Al-Mg IMCs.The shear strength of the AZ91D/A356 bimetal with a Ni coating of 45μm thickness enhanced 41.4%in comparison with that of the bimetal without Ni coating,and the fracture of the bimetal with 45μm’s Ni coating occurred between the Mg matrix and the interface layer with a mixture of brittle fracture and ductile fracture.
基金the supports provided by the National Natural Science Foundation of China(No.52075198)the National Key Research and Development Program of China(Nos.2020YFB2008300,2020YFB2008304)+1 种基金the State Key Lab of Advanced Metals and Materials(No.2021-ZD07)the Analytical and Testing Center,HUST。
文摘In this work,a vibration was applied in the preparation of the Mg/Al bimetal by a novel compound casting in order to improve the mechanical properties of the Mg/Al bimetal,and the effect of the vibration on the interfacial microstructure and mechanical properties of the Mg/Al bimetal was investigated.The results indicated that the vibration had a significant effect on the interfacial microstructure and mechanical properties of the Mg/Al bimetal,but it did not change the phase compositions of the interface,which was composed of layerⅠ(Al3Mg2+Mg2Si),layerⅡ(Al_(12)Mg_(17)+Mg_(2)Si)and layerⅢ(Al_(12)Mg_(17)/δ-Mg).Without vibration,the Mg_(2)Si phase with a needle-like morphology mainly aggregated in the layerⅡof the interface.After the application of the vibration,the SEM and EBSD analysis results showed that the Mg_(2)Si and Al3Mg2phases in the interface were obviously refined,and the distribution of the Mg_(2)Si became more uniform,due to the strong forced convection of the molten metal resulting from the vibration.The TEM analysis indicated that the interface between the A_(l3)Mg_(2) and Mg_(2)Si phases was non-coherent,suggesting the Mg_(2)Si particles cannot act as a heterogeneous nucleation base during the solidification process of the interface.Compared to the Mg/Al bimetal without vibration,the shear strength of the Mg/Al bimetal with vibration increased by about 50%from 31.7 MPa on average to 47.5 MPa,and the hardness of the layer I of the interface increased,and the hardness of the layerⅢdecreased.The fracture surface transformed from a flat fracture morphology without vibration to an irregular zigzag fracture morphology.
文摘The centrifugal casting of compound HSS/nodular cast iron roll collar was studied,and the factors affecting transition zone quality were analyzed.The pouring temperature and interval in pouring are the main factors affecting transition zone quality.By controlling process parameter and flux adding during casting,high quality roll collar was obtained.The cause,why in the casting of HSS part,segregation appears easily,was analyzed and the countermeasure eliminating segregation was put forward,the measure eliminating heat treatment crackling was also put forward.
基金the supports provided by the National Natural Science Foundation of China(No.52075198)the National Key Research and Development Program of China(No.2020YFB2008304)+1 种基金the State Key Lab of Advanced Metals and Materials(No.2021-ZD07)the Analytical and Testing Center,HUST。
文摘To improve the Al/Mg bimetallic interface,La was added into the Al/Mg bimetallic interface manufactured by a compound casting process.The effect of La addition on the microstructure,mechanical properties and fracture behavior of the Al/Mg bimetallic interface and the formation mechanism of the interface were studied in detail.Al_(11)La_(3),Al_(8)Mn_(4)La,Al_(20)Ti_(2)La,and other rare earth precipitates(RE precipitates)preferentially precipitated at the interface with La addition,while the number of the Al_(11)La_(3)and Al_(8)Mn_(4)La located in eutectic structure area(E area)gradually increased and aggregated in the interface with the increase of the La content.Besides,the matrix structure in different areas of the Al/Mg interface changed in different degrees,and the eutectic structure and primaryγ(Mg_(17)Al_(12))dendrites in the E area were refned,but the intermetallic compounds area(IMC area)had no obvious change.With the addition of the La,the interface was strengthened under the comprehensive effect of refnement strengthening and precipitation strengthening from the E area.When the La content increased to 1.0%,the shear strength of the Al/Mg bimetal reached the maximum of 51.54 MPa,which was 30.95%higher than the group without La addition.However,with the further increase of the La content,the large area aggregation of the Al_(11)La_(3)and Al_(8)Mn_(4)La occurred in the interface,leading to the separation of the matrix structure of the E area and the decrease of the shear strength of the Al/Mg interface.
文摘Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al/Mg dissimilar bimetals.Magnesium melt was poured at 700 °C,with melt-to-solid volume ratios(Vm/Vs) of 1.5 and 3,into a preheated hollow aluminum cylinder.The preheating temperatures of the solid part were 320,400,and 450 °C,and the constant rotational speed was 1,600 rpm.The cast parts were kept inside the casting machine until reaching the cooling temperature of 150 °C.The result showed that an increase in preheating temperature from 320 to 450 °C led to an enhanced reaction layer thickness.In addition,an increase in the Vm/Vs from 1.5 to 3 resulted in raising the interface thickness from 1.2 to 1.8 mm.Moreover,the interface was not continuously formed when a Vm/Vs of 3 was selected.In this case,the force of contraction overcame the resultant acting force on the interface.An interface formed at the volume ratio of 1.5 was examined using scanning electron microscopy(SEM) equipped with energy-dispersive X-ray spectroscopy(EDS),and the results demonstrated the formation of Al_(3)Mg_(2),Al_(12)Mg_(17) and(δ+Al_(12)Mg_(17)) eutectic structures in the interface.
文摘The formation mechanism of the bonding between compound cast Al/Ti bimetal during a heat treatment regime was investigated.Commercially pure Al was cast and melt on a Ti bar in a steel tube,followed by heat treatment on the compound cast Ti/Al bimetal for different periods of time once the Al melt was solidified.No bonding was observed between the two metals after the initial casting,which can be attributed to the presence of oxide films on the liquid Al and solid Ti alloys and the trapped atmosphere between them.The effect of these layers in preventing the formation of bonding was eliminated after heat treating the cast part at~973 K(~700℃)for at least 15 min,and the metals started to bond with each other.A detailed description of this bonding mechanism is presented in this paper.
基金financial support from Iran National Science Foundation (INSF) under grant number 95822903
文摘The objective of this work was to investigate the thermal and mechanical interactions between the two components of a compound squeeze cast macrocomposite bimetal. First, an Al/Al-4.5wt.%Cu macrocomposite bimetal was fabricated by compound squeeze casting process. Then, heat transfer, solidification and distribution of the generated stresses along the interface region of the bimetal were analyzed using Thermo-Calc, ProCAST and ANSYS softwares, and structure, copper distribution and microhardness changes across the interface of the bimetal were studied. The results showed no noticeable change in the structure of the Al-4.5wt.%Cu insert and no obvious micromixing and diffusion of copper across the interface. Simulation results were in good agreement with the experimental ones only when an equivalent oxide layer at the interface was defined and its effect on heat transfer was considered. This layer caused up to 50% decrease in local liquid fraction formed on the surface of the insert. Simulation of the generated stresses showed a uniformly distributed stress along the interface which was significantly lower than the compressive strength of the oxide layer, resulting in its good stability during the fabrication process. It was postulated that this continuous oxide layer not only acted as a thermal barrier but prevented the direct metal-metal contact along the interface as well.
基金Sponsored by National Natural Science Foundation(59874024)
文摘The centrifugal casting of compound HSS/nodular cast iron roll collar was studied, and the factors affecting transition zone quality were analyzed. The pouring temperature and interval in pouring are the main factors affecting transition zone quality. By controlling process parameter and flux adding during casting, high quality roll collar was obtained. The cause, why in the casting of HSS part, segregation appears easily, was analyzed and the countermeasure eliminating segregation was put forward, the measure eliminating heat treatment crackling was also put forward.