A simple two-dimensional phononic crystal hosting topologically protected edge states is proposed to emulate the quantum spin Hall effect in electronic systems, whose phononic topological phase can be reconfigured thr...A simple two-dimensional phononic crystal hosting topologically protected edge states is proposed to emulate the quantum spin Hall effect in electronic systems, whose phononic topological phase can be reconfigured through the rotation of scatters. In particular, the band inversion occurs between two pairs of high-order compound states, resulting in topological phase transition from trivial to nontrivial over a relatively broad high-frequency range. This is further evidenced by an effective Hamiltonian derived by the k·p perturbation theory. The phononic topology is related to a pseudo-timereversal symmetry constructed by the point group symmetry of two doubly degenerate eigenstates. Numerical simulations unambiguously demonstrate robust helical edge states whose pseudospin indices are locked to the propagation direction along the interface between topologically trivial and nontrivial phononic crystals. Our designed phononic systems provide potential applications in robust acoustic signal transport along any desired path over a high-frequency range.展开更多
This paper investigates the modal properties of semiconductor lasers operating in the strong-feedback regime. Analytical expressions are developed based on an iterative travelling-wave model, which enable a complete a...This paper investigates the modal properties of semiconductor lasers operating in the strong-feedback regime. Analytical expressions are developed based on an iterative travelling-wave model, which enable a complete and quantitative description of a compound cavity mode in its steady state. Additional information is provided about the physical inside into a compound laser system, such as a bifurcation diagram of the compound cavity modes for full variation range (from 0 to 1) of the external reflection coefficient and a more general shape for the diagram of photon density versus mode phase - this latter will reduce to the classical "ellipse" in the weak-feedback regime. It is shown that in the strong-feedback regime, a feedback laser is characterized by a small mode number and a high density of photons. This behavior confirms previous experimental observations, showing that beyond the coherence-collapse regime, the compound laser system could be re-stabilized, and that as a result power-enhanced low-noise stable laser operation with quasi-uniform pulsation is possible with external-mirror reflectivity close to 1. Moreover, it is also shown that for a compound system operating in the strong-feedback regime, an anti-reflection treatment of a laser can significantly reduce its current threshold, and that in the absence of this treatment excitation of a minimum-linewidth mode with higher output power would be possible inside such a system. Finally, it is shown that in the weak-feedback regime except for a phase shift the iterative travelling-wave model will reduce to the Lang-Kobayashi model in cases where the product of the feedback rate and the internal round-trip time is much less than unity (that would mean in situations of as-cleaved lasers).展开更多
The low-temperature heat capacities are studied for antiperovskite compounds AX M_3(A = Al, Ga, Cu, Ag, Sn, X = C,N, M = Mn, Fe, Co). A large peak in(C- γ T)/T^3 versus T is observed for each of a total of 18 com...The low-temperature heat capacities are studied for antiperovskite compounds AX M_3(A = Al, Ga, Cu, Ag, Sn, X = C,N, M = Mn, Fe, Co). A large peak in(C- γ T)/T^3 versus T is observed for each of a total of 18 compounds investigated,indicating an existence of low-energy phonon mode unexpected by Debye T^3 law. Such a peak is insensitive to the external magnetic field up to 80 k Oe(1 Oe = 79.5775 A·m-1). For compounds with smaller lattice constant, the peak shifts towards higher temperatures with a reduction of peak height. This abnormal peak in(C- γ T)/T^3 versus T of antiperovskite compound may result from the strongly dispersive acoustic branch due to the heavier A atoms and the optical-like mode from the dynamic rotation of X M_6 octahedron. Such a low-energy phonon mode may not contribute negatively to the normal thermal expansion in AX M_3 compounds, while it is usually concomitant with negative thermal expansion in open-structure material(e.g., ZrW_2O_8, Sc F_3).展开更多
A novel nitro-coordinated potassium compound [K(Htdc)(H_2O)]_n(tdc = 3-nitro-thiophene-2,5-dicarboxylate), has been synthesized and characterized. The complex with a two-dimensional(2D) layer structure contains an inf...A novel nitro-coordinated potassium compound [K(Htdc)(H_2O)]_n(tdc = 3-nitro-thiophene-2,5-dicarboxylate), has been synthesized and characterized. The complex with a two-dimensional(2D) layer structure contains an infinite K-O ladder-shaped chain, which is connected through carboxyl and unusual nitro-coordination of Htdc– anion. Then the 2D layers are further extended by intermolecular hydrogen-bonding to form a three-dimensional(3D) supramoleculalr network. Variable temperature powder X-ray diffractions, thermogravimetric analysis and nuclear magnetic resonance studies exhibit that the compound has a thermal-induced decarboxylative behavior.展开更多
A robust controller for bank to turn(BTT) missiles with aerodynamic fins and reaction jet control system(RCS) is developed based on nonlinear control dynamic models comprising couplings and aerodynamic uncertainties. ...A robust controller for bank to turn(BTT) missiles with aerodynamic fins and reaction jet control system(RCS) is developed based on nonlinear control dynamic models comprising couplings and aerodynamic uncertainties. The fixed time convergence theory is incorporated with the sliding mode control technique to ensure that the system tracks the desired command within uniform bounded time under different initial conditions. Unlike previous terminal sliding mode approaches, the bound of settling time is independent of the initial state, which means performance metrics like convergence rate can be predicted beforehand. To reduce the burden of control design in terms of robustness, extended state observer(ESO) is introduced for uncertainty estimation with the output substituted into the controller as feedforward compensation. Cascade control structure is employed with the proposed control law and therein the compound control signal is obtained.Afterwards, control inputs for two kinds of actuators are allocated on the basis of their inherent characteristics. Finally, a number of simulations are carried out and demonstrate the effectiveness of the designed controller.展开更多
基金Project supported by the Young Scientists Fund of the Natural Science Foundation of Shandong Province,China(Grant No.ZR2016AQ09)Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11704219).
文摘A simple two-dimensional phononic crystal hosting topologically protected edge states is proposed to emulate the quantum spin Hall effect in electronic systems, whose phononic topological phase can be reconfigured through the rotation of scatters. In particular, the band inversion occurs between two pairs of high-order compound states, resulting in topological phase transition from trivial to nontrivial over a relatively broad high-frequency range. This is further evidenced by an effective Hamiltonian derived by the k·p perturbation theory. The phononic topology is related to a pseudo-timereversal symmetry constructed by the point group symmetry of two doubly degenerate eigenstates. Numerical simulations unambiguously demonstrate robust helical edge states whose pseudospin indices are locked to the propagation direction along the interface between topologically trivial and nontrivial phononic crystals. Our designed phononic systems provide potential applications in robust acoustic signal transport along any desired path over a high-frequency range.
文摘This paper investigates the modal properties of semiconductor lasers operating in the strong-feedback regime. Analytical expressions are developed based on an iterative travelling-wave model, which enable a complete and quantitative description of a compound cavity mode in its steady state. Additional information is provided about the physical inside into a compound laser system, such as a bifurcation diagram of the compound cavity modes for full variation range (from 0 to 1) of the external reflection coefficient and a more general shape for the diagram of photon density versus mode phase - this latter will reduce to the classical "ellipse" in the weak-feedback regime. It is shown that in the strong-feedback regime, a feedback laser is characterized by a small mode number and a high density of photons. This behavior confirms previous experimental observations, showing that beyond the coherence-collapse regime, the compound laser system could be re-stabilized, and that as a result power-enhanced low-noise stable laser operation with quasi-uniform pulsation is possible with external-mirror reflectivity close to 1. Moreover, it is also shown that for a compound system operating in the strong-feedback regime, an anti-reflection treatment of a laser can significantly reduce its current threshold, and that in the absence of this treatment excitation of a minimum-linewidth mode with higher output power would be possible inside such a system. Finally, it is shown that in the weak-feedback regime except for a phase shift the iterative travelling-wave model will reduce to the Lang-Kobayashi model in cases where the product of the feedback rate and the internal round-trip time is much less than unity (that would mean in situations of as-cleaved lasers).
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2011CBA00111)the National Natural Science Foundation of China(Grant Nos.51322105,U1632158,51301165,and 51301167)
文摘The low-temperature heat capacities are studied for antiperovskite compounds AX M_3(A = Al, Ga, Cu, Ag, Sn, X = C,N, M = Mn, Fe, Co). A large peak in(C- γ T)/T^3 versus T is observed for each of a total of 18 compounds investigated,indicating an existence of low-energy phonon mode unexpected by Debye T^3 law. Such a peak is insensitive to the external magnetic field up to 80 k Oe(1 Oe = 79.5775 A·m-1). For compounds with smaller lattice constant, the peak shifts towards higher temperatures with a reduction of peak height. This abnormal peak in(C- γ T)/T^3 versus T of antiperovskite compound may result from the strongly dispersive acoustic branch due to the heavier A atoms and the optical-like mode from the dynamic rotation of X M_6 octahedron. Such a low-energy phonon mode may not contribute negatively to the normal thermal expansion in AX M_3 compounds, while it is usually concomitant with negative thermal expansion in open-structure material(e.g., ZrW_2O_8, Sc F_3).
基金supported by the Natural Science Foundation of Henan Province(172102210410 and 172102310476)
文摘A novel nitro-coordinated potassium compound [K(Htdc)(H_2O)]_n(tdc = 3-nitro-thiophene-2,5-dicarboxylate), has been synthesized and characterized. The complex with a two-dimensional(2D) layer structure contains an infinite K-O ladder-shaped chain, which is connected through carboxyl and unusual nitro-coordination of Htdc– anion. Then the 2D layers are further extended by intermolecular hydrogen-bonding to form a three-dimensional(3D) supramoleculalr network. Variable temperature powder X-ray diffractions, thermogravimetric analysis and nuclear magnetic resonance studies exhibit that the compound has a thermal-induced decarboxylative behavior.
基金supported by the National Natural Science Foundation of China(11572036)
文摘A robust controller for bank to turn(BTT) missiles with aerodynamic fins and reaction jet control system(RCS) is developed based on nonlinear control dynamic models comprising couplings and aerodynamic uncertainties. The fixed time convergence theory is incorporated with the sliding mode control technique to ensure that the system tracks the desired command within uniform bounded time under different initial conditions. Unlike previous terminal sliding mode approaches, the bound of settling time is independent of the initial state, which means performance metrics like convergence rate can be predicted beforehand. To reduce the burden of control design in terms of robustness, extended state observer(ESO) is introduced for uncertainty estimation with the output substituted into the controller as feedforward compensation. Cascade control structure is employed with the proposed control law and therein the compound control signal is obtained.Afterwards, control inputs for two kinds of actuators are allocated on the basis of their inherent characteristics. Finally, a number of simulations are carried out and demonstrate the effectiveness of the designed controller.