Based on the conclusions of domestic and foreign research, we have analyzed the collapse-fall characteristics of overlying strata and the mechanism of aquifer-protective mining in shallow coal seam working faces at th...Based on the conclusions of domestic and foreign research, we have analyzed the collapse-fall characteristics of overlying strata and the mechanism of aquifer-protective mining in shallow coal seam working faces at the Shendong Mine. We have selected the height of the water-conducting fracture zone in overlying strata as a composite index and established the applicable conditions of aquifer-protective mining in shallow coal seams with a multi-factor synthetic-index classification method. From our calculations and analyses of variance, we used factors such as the overlying strata strength, mining disturbing factors and rock integrity as related factors of the composite index. We have classified the applicable conditions of aquifer-protective mining in shallow coal seams into seven types by comparing the result of the height of water-conducting fractured zones of long-wall and short-wall working faces with the thickness of the bedrock, the thickness of the weathered zone and the size of safety coal-rock pillars. As a result, we propose the preliminary classification system of aquifer-protective mining in shallow coal seams. It can provide a theoretical guidance for safe applications of aquifer-protective mining technology in shallow coal seams under similar conditions.展开更多
基金Financial support for this work, provided by the research fund of the North China Institute of Science and Technology (No.A09002)the National Natural Science Foundation of China (No.50834005)the National Basic Research Program of China (No.2007CB209402)
文摘Based on the conclusions of domestic and foreign research, we have analyzed the collapse-fall characteristics of overlying strata and the mechanism of aquifer-protective mining in shallow coal seam working faces at the Shendong Mine. We have selected the height of the water-conducting fracture zone in overlying strata as a composite index and established the applicable conditions of aquifer-protective mining in shallow coal seams with a multi-factor synthetic-index classification method. From our calculations and analyses of variance, we used factors such as the overlying strata strength, mining disturbing factors and rock integrity as related factors of the composite index. We have classified the applicable conditions of aquifer-protective mining in shallow coal seams into seven types by comparing the result of the height of water-conducting fractured zones of long-wall and short-wall working faces with the thickness of the bedrock, the thickness of the weathered zone and the size of safety coal-rock pillars. As a result, we propose the preliminary classification system of aquifer-protective mining in shallow coal seams. It can provide a theoretical guidance for safe applications of aquifer-protective mining technology in shallow coal seams under similar conditions.