This article describes practical preparation of marine engineers on the full mission simulator complex of the ship's automated electrical power plant. A full mission simulator complex of the ship's automated power m...This article describes practical preparation of marine engineers on the full mission simulator complex of the ship's automated electrical power plant. A full mission simulator complex of the ship's automated power management system meets International Convention STCW (Standards of Training, Certification and Watchkeeping) 78 (with Manila amendments 2010) requirements in part of adequate reproduction of its operational modes corresponding to the actual configuration and layout of the ship's automated power management system with real consumers and typical loads. The simulator is fully consistent with the goals and objectives of the practical training, as well as the goals and objectives of proficiency testing engine department officers on issues of technical maintenance of real ship's equipment (high voltage installations included) and means of automation. The simulator's complex is designed for training and proficiency testing of cadets and students of maritime educational institutions, as well as training and proficiency testing of marine specialists (mechanics and electricians) by watch-keeping and maintenance of modem integrated automated control systems of ship's electric power plant and the individual ship electromechanical systems, including high-voltage systems. A simulator's complex provides adequate reproduction of operational situations on technical side of real ship electric and automation equipment provides training on monitoring, control and management diesel-generator sets in hand, semi-automatic and automatic modes of power station, control and management of electromechanical systems, as well as the set of tasks upon parameterization, visualization and etc. Besides number of combinations of monitoring, control and management tasks, the simulator's complex provides an opportunity to simulate various practical fault conditions. It allows students to focus on the work of automatic control system in emergency situations and to work out correct actions for a watch-keeper on searching, localizing of faults and troubleshooting of equipment.展开更多
The contradiction of the relay protection with other task has been solved by double CPU’s structure in this comprehensive monitor. Thus the speed of the data processing has raised and the requirement of relay protect...The contradiction of the relay protection with other task has been solved by double CPU’s structure in this comprehensive monitor. Thus the speed of the data processing has raised and the requirement of relay protection and the real bine monitoring has all been satisfied. The input precision of the fault current and the rated current has been assured respectively by applying the relay protection CT and measurement CT. The algorithm of FFT with or without the difference has remarkably raised the precision of the protective measurement and removed the influence of the attenuation DC component in the fault current. Thus the accuracy and reliability of the protective trigger has been raised greatly.展开更多
The paper presents a practical dynamic security region (PDSR) based dynamic security risk assessment and optimization model for power transmission system. The cost of comprehensive security control and the influence o...The paper presents a practical dynamic security region (PDSR) based dynamic security risk assessment and optimization model for power transmission system. The cost of comprehensive security control and the influence of uncertainties of power injections are considered in the model of dynamic security risk assessment. The transient stability constraints and uncertainties of power injections can be considered easily by PDSR in form of hyper-box. A method to define and classify contingency set is presented, and a risk control optimization model is given which takes total dynamic insecurity risk as the objective function for a dominant con-tingency set. An optimal solution of dynamic insecurity risk is obtained by opti-mizing preventive and emergency control cost and contingency set decomposition. The effectiveness of this model has been proved by test results on the New Eng-land 10-genarator 39-bus system.展开更多
文摘This article describes practical preparation of marine engineers on the full mission simulator complex of the ship's automated electrical power plant. A full mission simulator complex of the ship's automated power management system meets International Convention STCW (Standards of Training, Certification and Watchkeeping) 78 (with Manila amendments 2010) requirements in part of adequate reproduction of its operational modes corresponding to the actual configuration and layout of the ship's automated power management system with real consumers and typical loads. The simulator is fully consistent with the goals and objectives of the practical training, as well as the goals and objectives of proficiency testing engine department officers on issues of technical maintenance of real ship's equipment (high voltage installations included) and means of automation. The simulator's complex is designed for training and proficiency testing of cadets and students of maritime educational institutions, as well as training and proficiency testing of marine specialists (mechanics and electricians) by watch-keeping and maintenance of modem integrated automated control systems of ship's electric power plant and the individual ship electromechanical systems, including high-voltage systems. A simulator's complex provides adequate reproduction of operational situations on technical side of real ship electric and automation equipment provides training on monitoring, control and management diesel-generator sets in hand, semi-automatic and automatic modes of power station, control and management of electromechanical systems, as well as the set of tasks upon parameterization, visualization and etc. Besides number of combinations of monitoring, control and management tasks, the simulator's complex provides an opportunity to simulate various practical fault conditions. It allows students to focus on the work of automatic control system in emergency situations and to work out correct actions for a watch-keeper on searching, localizing of faults and troubleshooting of equipment.
文摘The contradiction of the relay protection with other task has been solved by double CPU’s structure in this comprehensive monitor. Thus the speed of the data processing has raised and the requirement of relay protection and the real bine monitoring has all been satisfied. The input precision of the fault current and the rated current has been assured respectively by applying the relay protection CT and measurement CT. The algorithm of FFT with or without the difference has remarkably raised the precision of the protective measurement and removed the influence of the attenuation DC component in the fault current. Thus the accuracy and reliability of the protective trigger has been raised greatly.
基金Supported by the key research of the National Natural Science Foundation of China (Grant No. 50595413) The National Basic Research Program of China (973 Program) (Grant No. 2004CB217904)
文摘The paper presents a practical dynamic security region (PDSR) based dynamic security risk assessment and optimization model for power transmission system. The cost of comprehensive security control and the influence of uncertainties of power injections are considered in the model of dynamic security risk assessment. The transient stability constraints and uncertainties of power injections can be considered easily by PDSR in form of hyper-box. A method to define and classify contingency set is presented, and a risk control optimization model is given which takes total dynamic insecurity risk as the objective function for a dominant con-tingency set. An optimal solution of dynamic insecurity risk is obtained by opti-mizing preventive and emergency control cost and contingency set decomposition. The effectiveness of this model has been proved by test results on the New Eng-land 10-genarator 39-bus system.