The East Asian monsoon has a tremendous impact on agricultural production in China. An assessment of the risk of drought disaster in maize-producing regions is therefore important in ensuring a reduction in such disas...The East Asian monsoon has a tremendous impact on agricultural production in China. An assessment of the risk of drought disaster in maize-producing regions is therefore important in ensuring a reduction in such disasters and an increase in food security. A risk assessment model, EPIC(Environmental Policy Integrated Climate) model, for maize drought disasters based on the Erosion Productivity Impact Calculator crop model is proposed for areas with the topographic characteristics of the mountainous karst region in southwest China. This region has one of the highest levels of environmental degradation in China. The results showed that the hazard risk level for the maize zone of southwest China is generally high. Most hazard index values were between 0.4 and 0.5,accounting for 47.32% of total study area. However,the risk level for drought loss was low. Most of the loss rate was <0.1, accounting for 96.24% of the total study area. The three high-risk areas were mainlydistributed in the parallel ridge–valley areas in the east of Sichuan Province, the West Mountain area of Guizhou Province, and the south of Yunnan Province.These results provide a scientific basis and support for the reduction of agricultural drought disasters and an increase in food security in the southwest China maize zone.展开更多
This paper describes the basic connotation of risk perception, the influence factors of the risk perception for agricultural drought and the mainstream assess- ment model. Additionally, it summarizes the latest develo...This paper describes the basic connotation of risk perception, the influence factors of the risk perception for agricultural drought and the mainstream assess- ment model. Additionally, it summarizes the latest developments of research meth- ods for risk perception for the agricultural drought, and the research status of the risk perception for agricultural drought, and put forward the trends of risk perception for the agricultural drought. Finally, it proposes the research areas of the risk per- ception for agricultural drought should be improved in future.展开更多
To the potential oil-spill risk caused by offshore pipeline more attention has been paid after the Dalian oil spill incident from oil-pipeline explosion. Since then an issue about how to prevent and control the sudden...To the potential oil-spill risk caused by offshore pipeline more attention has been paid after the Dalian oil spill incident from oil-pipeline explosion. Since then an issue about how to prevent and control the sudden oil-spill from the offshore pipeline has been raised. In this paper, we proposed an optimized model to analyze the main causes(probability) of spill and the consequence with the fuzzy comprehensive assessment model. Considering the complicated assessment process for oil-spill, the assessment factor system involving the spill probability and consequence was established based on the operative manual and statistic leakage/damage data of offshore pipeline in order to estimate the integrated spill risk score automatically. The evaluated factors of spill probability could be grouped into five aspects: corrosion, fatigue, national damage, third party, and operational fault; the consequence evaluated factors of spill included hazard of oil and impact-controlling capability. With some modifications based on experts' opinions, each of the evaluated factors in our work was developed with a relative weight and evaluation criterion. A test example for an offshore pipeline in the Bohai waters was described to show how the model can be used for an actual case in more detail. By using the oil-spill risk assessment model, it is easy to determine the risk level associated with the ongoing activity and management level and hence to take the risk mitigation action immediately.展开更多
Mine safety have top-five disasters,which including the water,gas,fire,dust and geological dynamic disaster.The coal mine water disaster is one of the important factors which restricted the development of China’s coa...Mine safety have top-five disasters,which including the water,gas,fire,dust and geological dynamic disaster.The coal mine water disaster is one of the important factors which restricted the development of China’s coal production.It is showed by statistics that 60%of mine accidents are affected by groundwater,which not only result in the production losses,casualties and a variety of展开更多
Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-drive...Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-driven or statistical model and its assessment results are subjective,difficult to quantify,and no pertinence.As a new research method for landslide susceptibility assessment,machine learning can greatly improve the landslide susceptibility model’s accuracy by constructing statistical models.Taking Western Henan for example,the study selected 16 landslide influencing factors such as topography,geological environment,hydrological conditions,and human activities,and 11 landslide factors with the most significant influence on the landslide were selected by the recursive feature elimination(RFE)method.Five machine learning methods[Support Vector Machines(SVM),Logistic Regression(LR),Random Forest(RF),Extreme Gradient Boosting(XGBoost),and Linear Discriminant Analysis(LDA)]were used to construct the spatial distribution model of landslide susceptibility.The models were evaluated by the receiver operating characteristic curve and statistical index.After analysis and comparison,the XGBoost model(AUC 0.8759)performed the best and was suitable for dealing with regression problems.The model had a high adaptability to landslide data.According to the landslide susceptibility map of the five models,the overall distribution can be observed.The extremely high and high susceptibility areas are distributed in the Funiu Mountain range in the southwest,the Xiaoshan Mountain range in the west,and the Yellow River Basin in the north.These areas have large terrain fluctuations,complicated geological structural environments and frequent human engineering activities.The extremely high and highly prone areas were 12043.3 km^(2)and 3087.45 km^(2),accounting for 47.61%and 12.20%of the total area of the study area,respectively.Our study reflects the distribution of landslide susceptibility in western Henan Province,which provides a scientific basis for regional disaster warning,prediction,and resource protection.The study has important practical significance for subsequent landslide disaster management.展开更多
Digital Agriculture is one of the important applications of Digital Earth.As the global climate changes and food security becomes an increasingly important issue,agriculture drought comes to the focus of attention.Chi...Digital Agriculture is one of the important applications of Digital Earth.As the global climate changes and food security becomes an increasingly important issue,agriculture drought comes to the focus of attention.China is a typical monsoon climate country as well as an agricultural country with the world’s largest population.The East Asian monsoon has had a tremendous impact upon agricultural production.Therefore,a maize drought disaster risk assessment,in line with the requirements of sustainable development of agriculture,is important for ensuring drought disaster reduction and food security.Meteorology,soil,land use,and agro-meteorological observation information of the research area were collected,and based on the concept framework of‘hazard-inducing factors assessment(hazard)-vulnerability assessment of hazard-affected body(vulner-ability curve)-risk assessment(risk),’importing crop model EPIC(Erosion-Productivity Impact Calculator),using crop model simulation and digital mapping techniques,quantitative assessment of spatio-temporal distribution of maize drought in China was done.The results showed that:in terms of 2,5,10,and 20 year return periods,the overall maize drought risk decreased gradually from northwest to southeast in the maize planting areas.With the 20 year return period,high risk value regions(drought loss rate]0.5)concentrate in the irrigated maize region of Northwest china,ecotone between agriculture and animal husbandry in Northern China,Hetao Irrigation Area,and north-central area of North China Plain,accounting for 6.41%of the total maize area.These results can provide a scientific basis for the government’s decision-making in risk management and drought disaster prevention in China.展开更多
Scenario modelling and the risk assessment of natural disasters is one of the hotspots in disaster research. However, up until now, urban natural disaster risk assessments lack common procedures and programmes. This p...Scenario modelling and the risk assessment of natural disasters is one of the hotspots in disaster research. However, up until now, urban natural disaster risk assessments lack common procedures and programmes. This paper selects rainstorm waterlogging as a disaster to research, which is one of the most frequently occurring hazards for most cities in China. As an example, we used a small-scale integrated methodology to assess risks relating to rainstorm waterlogging hazards in the Jing'an District of Shanghai. Based on the basic concept of disaster risk, this paper applies scenario modelling to express the risk of small-scale urban rainstorm waterlogging disasters in different return periods. Through this analysis of vulnerability and exposure, we simulate different disaster scenarios and propose a comprehensive analysis method and procedure for small-scale urban storm waterlogging disaster risk assessments. A grid-based Geographical Information System (GIS) approach, including an urban terrain model, an urban rainfall model and an urban drainage model, was applied to simulate inundation area and depth. Stage-damage curves for residential buildings and contents were then generated by the loss data of waterlogging from field surveys, which were further applied to analyse vulnerability, exposure and loss assessment. Finally, the exceedance probability curve for disaster damage was constructed using the damage of each simulated event and the respective exceedance probabilities. A framework was also developed for coupling the waterlogging risk with the risk planning and management through the exceedance probability curve and annual average waterlogging loss. This is a new exploration for small-scale urban natural disaster scenario simulation and risk assessment.展开更多
为了准确判断施工现场在突降暴雨情况下的安全状态,采用贝叶斯最优最劣法(Bayesian Best Worst Method,BBWM)和云模型方法,提出暴雨灾害下的建筑施工现场风险评价模型,以确定施工现场在遭受暴雨灾害时的风险等级。该模型利用了压力状态...为了准确判断施工现场在突降暴雨情况下的安全状态,采用贝叶斯最优最劣法(Bayesian Best Worst Method,BBWM)和云模型方法,提出暴雨灾害下的建筑施工现场风险评价模型,以确定施工现场在遭受暴雨灾害时的风险等级。该模型利用了压力状态响应模型(Pressure State Response,PSR)和灾害系统理论,在考虑致灾因子危险性、孕灾环境稳定性、承灾体脆弱性和减灾能力抵御性4方面的基础上,构建18个风险因素的施工现场风险评价指标体系,并以武汉市某施工现场为例进行验证。结果显示,施工现场的减灾能力抵御性处于最重要的地位,做好现场减灾应对措施对灾害有非常重要的帮助;案例项目的评价结果处于一般风险状态,与现场实际情况相符。展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 41301593 and 41471428)the Arid Meteorology Science Foundation, CMA (IAM201407)the State Key Development Program for BasicResearch of China (Grant No. 2012CB955402)
文摘The East Asian monsoon has a tremendous impact on agricultural production in China. An assessment of the risk of drought disaster in maize-producing regions is therefore important in ensuring a reduction in such disasters and an increase in food security. A risk assessment model, EPIC(Environmental Policy Integrated Climate) model, for maize drought disasters based on the Erosion Productivity Impact Calculator crop model is proposed for areas with the topographic characteristics of the mountainous karst region in southwest China. This region has one of the highest levels of environmental degradation in China. The results showed that the hazard risk level for the maize zone of southwest China is generally high. Most hazard index values were between 0.4 and 0.5,accounting for 47.32% of total study area. However,the risk level for drought loss was low. Most of the loss rate was <0.1, accounting for 96.24% of the total study area. The three high-risk areas were mainlydistributed in the parallel ridge–valley areas in the east of Sichuan Province, the West Mountain area of Guizhou Province, and the south of Yunnan Province.These results provide a scientific basis and support for the reduction of agricultural drought disasters and an increase in food security in the southwest China maize zone.
基金Supported by the National Natural Foundation of China(4161100)the Fund Program of Yunnan University(2013CG011)~~
文摘This paper describes the basic connotation of risk perception, the influence factors of the risk perception for agricultural drought and the mainstream assess- ment model. Additionally, it summarizes the latest developments of research meth- ods for risk perception for the agricultural drought, and the research status of the risk perception for agricultural drought, and put forward the trends of risk perception for the agricultural drought. Finally, it proposes the research areas of the risk per- ception for agricultural drought should be improved in future.
基金the Marine Public Welfare Research Project of China (No. 201205012)Preferential Funding of Tianjin
文摘To the potential oil-spill risk caused by offshore pipeline more attention has been paid after the Dalian oil spill incident from oil-pipeline explosion. Since then an issue about how to prevent and control the sudden oil-spill from the offshore pipeline has been raised. In this paper, we proposed an optimized model to analyze the main causes(probability) of spill and the consequence with the fuzzy comprehensive assessment model. Considering the complicated assessment process for oil-spill, the assessment factor system involving the spill probability and consequence was established based on the operative manual and statistic leakage/damage data of offshore pipeline in order to estimate the integrated spill risk score automatically. The evaluated factors of spill probability could be grouped into five aspects: corrosion, fatigue, national damage, third party, and operational fault; the consequence evaluated factors of spill included hazard of oil and impact-controlling capability. With some modifications based on experts' opinions, each of the evaluated factors in our work was developed with a relative weight and evaluation criterion. A test example for an offshore pipeline in the Bohai waters was described to show how the model can be used for an actual case in more detail. By using the oil-spill risk assessment model, it is easy to determine the risk level associated with the ongoing activity and management level and hence to take the risk mitigation action immediately.
文摘Mine safety have top-five disasters,which including the water,gas,fire,dust and geological dynamic disaster.The coal mine water disaster is one of the important factors which restricted the development of China’s coal production.It is showed by statistics that 60%of mine accidents are affected by groundwater,which not only result in the production losses,casualties and a variety of
基金This work was financially supported by National Natural Science Foundation of China(41972262)Hebei Natural Science Foundation for Excellent Young Scholars(D2020504032)+1 种基金Central Plains Science and technology innovation leader Project(214200510030)Key research and development Project of Henan province(221111321500).
文摘Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-driven or statistical model and its assessment results are subjective,difficult to quantify,and no pertinence.As a new research method for landslide susceptibility assessment,machine learning can greatly improve the landslide susceptibility model’s accuracy by constructing statistical models.Taking Western Henan for example,the study selected 16 landslide influencing factors such as topography,geological environment,hydrological conditions,and human activities,and 11 landslide factors with the most significant influence on the landslide were selected by the recursive feature elimination(RFE)method.Five machine learning methods[Support Vector Machines(SVM),Logistic Regression(LR),Random Forest(RF),Extreme Gradient Boosting(XGBoost),and Linear Discriminant Analysis(LDA)]were used to construct the spatial distribution model of landslide susceptibility.The models were evaluated by the receiver operating characteristic curve and statistical index.After analysis and comparison,the XGBoost model(AUC 0.8759)performed the best and was suitable for dealing with regression problems.The model had a high adaptability to landslide data.According to the landslide susceptibility map of the five models,the overall distribution can be observed.The extremely high and high susceptibility areas are distributed in the Funiu Mountain range in the southwest,the Xiaoshan Mountain range in the west,and the Yellow River Basin in the north.These areas have large terrain fluctuations,complicated geological structural environments and frequent human engineering activities.The extremely high and highly prone areas were 12043.3 km^(2)and 3087.45 km^(2),accounting for 47.61%and 12.20%of the total area of the study area,respectively.Our study reflects the distribution of landslide susceptibility in western Henan Province,which provides a scientific basis for regional disaster warning,prediction,and resource protection.The study has important practical significance for subsequent landslide disaster management.
基金by National Key Technologies R&D Program of China(No.2006BAD20B03)Special Grant for Prevention and Treatment of Infectious Diseases(2008ZX10004-012).
文摘Digital Agriculture is one of the important applications of Digital Earth.As the global climate changes and food security becomes an increasingly important issue,agriculture drought comes to the focus of attention.China is a typical monsoon climate country as well as an agricultural country with the world’s largest population.The East Asian monsoon has had a tremendous impact upon agricultural production.Therefore,a maize drought disaster risk assessment,in line with the requirements of sustainable development of agriculture,is important for ensuring drought disaster reduction and food security.Meteorology,soil,land use,and agro-meteorological observation information of the research area were collected,and based on the concept framework of‘hazard-inducing factors assessment(hazard)-vulnerability assessment of hazard-affected body(vulner-ability curve)-risk assessment(risk),’importing crop model EPIC(Erosion-Productivity Impact Calculator),using crop model simulation and digital mapping techniques,quantitative assessment of spatio-temporal distribution of maize drought in China was done.The results showed that:in terms of 2,5,10,and 20 year return periods,the overall maize drought risk decreased gradually from northwest to southeast in the maize planting areas.With the 20 year return period,high risk value regions(drought loss rate]0.5)concentrate in the irrigated maize region of Northwest china,ecotone between agriculture and animal husbandry in Northern China,Hetao Irrigation Area,and north-central area of North China Plain,accounting for 6.41%of the total maize area.These results can provide a scientific basis for the government’s decision-making in risk management and drought disaster prevention in China.
基金National Nature Science Foundation of China, No.41071324 No.40730526+2 种基金 Key Subject Developing Project by Shanghai Municipal Education Commission, No.J50402 Science and Technology Commission of Shanghai Municipality, No.08240514000 Leading Academic Discipline Project of Shanghai Normal University, No.DZL809
文摘Scenario modelling and the risk assessment of natural disasters is one of the hotspots in disaster research. However, up until now, urban natural disaster risk assessments lack common procedures and programmes. This paper selects rainstorm waterlogging as a disaster to research, which is one of the most frequently occurring hazards for most cities in China. As an example, we used a small-scale integrated methodology to assess risks relating to rainstorm waterlogging hazards in the Jing'an District of Shanghai. Based on the basic concept of disaster risk, this paper applies scenario modelling to express the risk of small-scale urban rainstorm waterlogging disasters in different return periods. Through this analysis of vulnerability and exposure, we simulate different disaster scenarios and propose a comprehensive analysis method and procedure for small-scale urban storm waterlogging disaster risk assessments. A grid-based Geographical Information System (GIS) approach, including an urban terrain model, an urban rainfall model and an urban drainage model, was applied to simulate inundation area and depth. Stage-damage curves for residential buildings and contents were then generated by the loss data of waterlogging from field surveys, which were further applied to analyse vulnerability, exposure and loss assessment. Finally, the exceedance probability curve for disaster damage was constructed using the damage of each simulated event and the respective exceedance probabilities. A framework was also developed for coupling the waterlogging risk with the risk planning and management through the exceedance probability curve and annual average waterlogging loss. This is a new exploration for small-scale urban natural disaster scenario simulation and risk assessment.
文摘为了准确判断施工现场在突降暴雨情况下的安全状态,采用贝叶斯最优最劣法(Bayesian Best Worst Method,BBWM)和云模型方法,提出暴雨灾害下的建筑施工现场风险评价模型,以确定施工现场在遭受暴雨灾害时的风险等级。该模型利用了压力状态响应模型(Pressure State Response,PSR)和灾害系统理论,在考虑致灾因子危险性、孕灾环境稳定性、承灾体脆弱性和减灾能力抵御性4方面的基础上,构建18个风险因素的施工现场风险评价指标体系,并以武汉市某施工现场为例进行验证。结果显示,施工现场的减灾能力抵御性处于最重要的地位,做好现场减灾应对措施对灾害有非常重要的帮助;案例项目的评价结果处于一般风险状态,与现场实际情况相符。