Aiming at applications as a projectile-borne video reconnaissance system, the overall design and prototype in principle of a mortar video reconnaissance system bomb were developed. Mortar launched test results show th...Aiming at applications as a projectile-borne video reconnaissance system, the overall design and prototype in principle of a mortar video reconnaissance system bomb were developed. Mortar launched test results show that the initial integrated system was capable of transmitting images through tens of kilometers with the image resolution identifying effectively tactical targets such as roads, hills, caverns, trees and rivers. The projectile-borne video reconnaissance system is able to meet the needs of tactical target identification and battle damage assessment for tactical operations. The study will provide significant technological support for further independent development.展开更多
To solve the real-time transmission problem of displacement fields in digital image correlation,two compression coding algorithms based on a discrete cosine transform(DCT)and discrete wavelet transform(DWT)are propose...To solve the real-time transmission problem of displacement fields in digital image correlation,two compression coding algorithms based on a discrete cosine transform(DCT)and discrete wavelet transform(DWT)are proposed.Based on the Joint Photographic Experts Group(JPEG)and JPEG 2000 standards,new non-integer and integer quantizations are proposed in the quantization procedure of compression algorithms.Displacement fields from real experiments were used to evaluate the compression ratio and computational time of the algorithm.The results show that the compression ratios of the DCT-based algorithm are mostly below 10%,which are much less than that of the DWT-based algorithm,and the computational speed is also significantly higher than that of the latter.These findings prove the algorithm s effectiveness in real-time displacement field wireless transmission.展开更多
Since the use of a quantum channel is very expensive for transmitting large messages, it is vital to develop an effective quantum compression encoding scheme that is easy to implement. Given that, with the single-phot...Since the use of a quantum channel is very expensive for transmitting large messages, it is vital to develop an effective quantum compression encoding scheme that is easy to implement. Given that, with the single-photon spin-orbit entanglement, we propose a quantum secret sharing scheme using orbital angular momentum onto multiple spin states based on Fibonacci compression encoding. In our proposed scheme, we can represent the frequency of any secret message which is typically collection of bits encodings of text or integers as a bitstring using the base Fibonacci sequence, which is encoded multiple spin states for secret shares transmitted to participants. We demonstrate that Fibonacci compression encoding carries excellent properties that enable us to achieve more robust quantum secret sharing schemes with fewer number of photons.展开更多
文摘Aiming at applications as a projectile-borne video reconnaissance system, the overall design and prototype in principle of a mortar video reconnaissance system bomb were developed. Mortar launched test results show that the initial integrated system was capable of transmitting images through tens of kilometers with the image resolution identifying effectively tactical targets such as roads, hills, caverns, trees and rivers. The projectile-borne video reconnaissance system is able to meet the needs of tactical target identification and battle damage assessment for tactical operations. The study will provide significant technological support for further independent development.
基金The National Natural Science Foundation of China(No.11827801,11902074)。
文摘To solve the real-time transmission problem of displacement fields in digital image correlation,two compression coding algorithms based on a discrete cosine transform(DCT)and discrete wavelet transform(DWT)are proposed.Based on the Joint Photographic Experts Group(JPEG)and JPEG 2000 standards,new non-integer and integer quantizations are proposed in the quantization procedure of compression algorithms.Displacement fields from real experiments were used to evaluate the compression ratio and computational time of the algorithm.The results show that the compression ratios of the DCT-based algorithm are mostly below 10%,which are much less than that of the DWT-based algorithm,and the computational speed is also significantly higher than that of the latter.These findings prove the algorithm s effectiveness in real-time displacement field wireless transmission.
基金Supported by the National Natural Science Foundation of China under No.61702427the Doctoral Program of Higher Education under Grant No.SWU115091+5 种基金the Fundamental Research Funds for the Central Universities(XDJK2018C048)the financial support in part by the 1000-Plan of Chongqing by Southwest University under No.SWU116007the National Natural Science Foundation of China under Grant No.61772437Sichuan Youth Science and Technique Foundation under No.2017JQ0048the National Natural Science Foundation of China under Grant No.61401371Josef Pieprzyk has been supported by National Science Centre,Poland,Project Registration Number UMO-2014/15/B/ST6/05130
文摘Since the use of a quantum channel is very expensive for transmitting large messages, it is vital to develop an effective quantum compression encoding scheme that is easy to implement. Given that, with the single-photon spin-orbit entanglement, we propose a quantum secret sharing scheme using orbital angular momentum onto multiple spin states based on Fibonacci compression encoding. In our proposed scheme, we can represent the frequency of any secret message which is typically collection of bits encodings of text or integers as a bitstring using the base Fibonacci sequence, which is encoded multiple spin states for secret shares transmitted to participants. We demonstrate that Fibonacci compression encoding carries excellent properties that enable us to achieve more robust quantum secret sharing schemes with fewer number of photons.