期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
FINITE ELEMENT SIMULATIONS FOR COMPRESSIBLE MISCIBLE DISPLACEMENT WITH MOLECULAR DISPERSION IN POROUS MEDIA 被引量:1
1
作者 CHEN HUANZHEN LI QIAN Department of Mathematics, Shandong Teacher’s University, Jinan 250014 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1996年第1期17-32,共16页
We consider a nonlinear parabolic system describing compressible miscibledisplacement in a porous medium [5]. Continuous time and discrete time Galerkinmethods are introduced to approximate the solution and optimal H^... We consider a nonlinear parabolic system describing compressible miscibledisplacement in a porous medium [5]. Continuous time and discrete time Galerkinmethods are introduced to approximate the solution and optimal H^1 error estimatesare obtained. One contribution of this paper is a demonstration of how moleculardispersion can be handled. 展开更多
关键词 Finite element method molecular dispersion compressible miscible displacement
下载PDF
GALERKIN METHOD FOR COMPLETELY COMPRESSIBLE DISPLACEMENT WITH MOLECULAR DIFFUSION AND DISPERSION
2
作者 CHENG AIJIE 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1998年第1期59-67,共9页
In this paper, the numerical approximation by Galerkin method for completely compressible miscible displacement with molecular diffusion and dispersion in porous media is considered. Continuous time procedure is intro... In this paper, the numerical approximation by Galerkin method for completely compressible miscible displacement with molecular diffusion and dispersion in porous media is considered. Continuous time procedure is introduced and analysed. Some new techniques are applied to the analysis. Optimal error estimates in L ∞(J;H 1(Ω)) are proved, which implies an essential improvement to existed results. MR Subject Classification: 65N15,65N30. 展开更多
关键词 compressible displacement molecular dispersion galerkin method.
全文增补中
GALERKIN METHOD FOR COMPRESSIBLE FLOW OF CONTAMINATION FROM NUCLEAR WASTE WITH MOLECULAR DIFFUSION AND DISPERSION
3
作者 程爱杰 王高洪 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1999年第1期39-52,共14页
Abstract A system of quasilinear coupled equations which arise from simulation of contamination of geologic nulear waste in porous media is studied. We’ll discuss Galerkin method for the model of compressible flow wi... Abstract A system of quasilinear coupled equations which arise from simulation of contamination of geologic nulear waste in porous media is studied. We’ll discuss Galerkin method for the model of compressible flow with molecular diffusion and dispersion. Some new techniques are introcued to error analysis. Only one dimensional case is considered. The optimal error estimate in both L^2 and H^1 is proved. A contribution of this paper is how the dispersion term can be handled, 展开更多
关键词 compressible flow CONTAMINATION of nuclear waste molecular diffusion and dispersion galerkin finite element method optimal error estimate.
下载PDF
Mixed Method for Compressible Miscible Displacement with Dispersion in Porous Media 被引量:1
4
作者 Chunguang Chen 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2007年第1期74-82,共9页
Compressible miscible displacement of one fluid by another in porous media is modelled by a nonlinear parabolic system. A finite element procedure is introduced to approximate the concentration of one fluid and the pr... Compressible miscible displacement of one fluid by another in porous media is modelled by a nonlinear parabolic system. A finite element procedure is introduced to approximate the concentration of one fluid and the pressure of the mixture. The concentration is treated by a Galerkin method while the pressure is treated by a parabolic mixed finite element method. The effect of dispersion, which is neglected in [1], is considered. Optimal order estimates in L2 are derived for the errors in the approximate solutions. 展开更多
关键词 互溶驱替 有限元分析 流体力学 离差
下载PDF
OPTIMAL ERROR ESTIMATE IN L~∞(J;L^2(Ω)) NORM OF FEM FOR A MODEL FOR COMPRESSIBLE MISCIBLE DISPLACEMENT IN POROUS MEDIA 被引量:2
5
作者 程爱杰 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1995年第2期222-236,共15页
We’ll study the FEM for a model for compressible miscible displacement in porous media which includes molecular diffusion and mechanical dispersion in one-dimensional space.A class of vertices-edges-elements interpol... We’ll study the FEM for a model for compressible miscible displacement in porous media which includes molecular diffusion and mechanical dispersion in one-dimensional space.A class of vertices-edges-elements interpolation operator ink is introduced.With the help of ink(not elliptic projection),the optimal error estimate in L∞(J;L2(Ω)) norm of FEM is proved. 展开更多
关键词 molecular diffusion and mechanical dispersion Single-phase displacement Finite element method (FEM) Vertices-edges-elements interpolation Optimal error estimate in L∞(J L2 (Ω)) norm.
下载PDF
多孔介质中两相可压缩可混溶驱动的GALERKIN方法
6
作者 陈春光 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第6期913-916,共4页
多孔介质中两相可压缩可混溶驱动问题由一对耦合的非线性方程来描述。Douglas在忽略弥散效应的情况下,讨论了该方程的半离散Galerkin求解方法,并得到了解的最优的L2模误差估计。文章讨论了在考虑弥散效应的情况下该方程的半离散Galerki... 多孔介质中两相可压缩可混溶驱动问题由一对耦合的非线性方程来描述。Douglas在忽略弥散效应的情况下,讨论了该方程的半离散Galerkin求解方法,并得到了解的最优的L2模误差估计。文章讨论了在考虑弥散效应的情况下该方程的半离散Galerkin方法,并得到了饱和度方程解的最优L2模误差估计。 展开更多
关键词 可压缩可混溶驱动 弥散效应 galerkin方法 误差估计
下载PDF
可压缩渗流驱动问题的混合有限元和间断Galerkin方法(英文) 被引量:6
7
作者 陈华 陈艳萍 《湘潭大学自然科学学报》 CAS CSCD 2004年第2期119-126,共8页
对于可压缩渗流驱动问题 ,我们采用混合有限元方法求解压力方程 ,用间断Galerkin方法求解浓度方程 .在使用间断Glerkin方法时引入截断算子“M” ,由此获得有关压力和浓度的最优先验误差估计 .
关键词 间断galerkin方法 混合有限元方法 可压缩渗流驱动问题 先验误差估计
下载PDF
A Posteriori Error Estimates of a Combined Mixed Finite Element and Discontinuous Galerkin Method for a Kind of Compressible Miscible Displacement Problems
8
作者 Jiming Yang Zhiguang Xiong 《Advances in Applied Mathematics and Mechanics》 SCIE 2013年第2期163-179,共17页
Akind of compressiblemiscible displacement problemswhich includemolecular diffusion and dispersion in porous media are investigated.The mixed finite element method is applied to the flow equation,and the transport one... Akind of compressiblemiscible displacement problemswhich includemolecular diffusion and dispersion in porous media are investigated.The mixed finite element method is applied to the flow equation,and the transport one is solved by the symmetric interior penalty discontinuous Galerkin method.Based on a duality argument,employing projection estimates and approximation properties,a posteriori residual-type hp error estimates for the coupled system are presented,which is often used for guiding adaptivity.Comparing with the error analysis carried out by Yang(Int.J.Numer.Meth.Fluids,65(7)(2011),pp.781-797),the current work is more complicated and challenging. 展开更多
关键词 A posteriori error discontinuous galerkin method compressible miscible displacement mixed finite element duality argument
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部