期刊文献+
共找到184篇文章
< 1 2 10 >
每页显示 20 50 100
Three-Dimensional Lattice Boltzmann Model for High-Speed Compressible Flows 被引量:1
1
作者 陈锋 许爱国 +1 位作者 张广财 李英骏 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第12期1121-1128,共8页
A highly efficient three-dimensional (31)) Lattice Boltzmann (LB) model for high-speed compressible flows is proposed. This model is developed from the original one by Kataoka and Tsutahara [Phys. Rev. E 69 (200... A highly efficient three-dimensional (31)) Lattice Boltzmann (LB) model for high-speed compressible flows is proposed. This model is developed from the original one by Kataoka and Tsutahara [Phys. Rev. E 69 (2004) 056702]. The convection term is discretized by the Non-oscillatory, containing No free parameters and Dissipative (NND) scheme, which effectively damps oscillations at discontinuities. To be more consistent with the kinetic theory of viscosity and to further improve the numerical stability, an additional dissipation term is introduced. Model parameters are chosen in such a way that the von Neumann stability criterion is satisfied. The new model is validated by well-known benchmarks, (i) Riemann problems, including the problem with Lax shock tube and a newly designed shock tube problem with high Mach number; (ii) reaction of shock wave on droplet or bubble. Good agreements are obtained between LB results and exact ones or previously reported solutions. The model is capable of simulating flows from subsonic to supersonic and capturing jumps resulted from shock waves. 展开更多
关键词 lattice Boltzmann method compressible flows Euler equations von Neumann stability analysis
下载PDF
Flux Limiter Lattice Boltzmann for Compressible Flows
2
作者 陈峰 许爱国 +1 位作者 张广财 李英骏 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第8期333-338,共6页
In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limit... In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limiter scheme is efficient in decreasing the artificial oscillations and numerical diffusion around the interface. Due to the kinetic nature, some interface problems being difficult to handle at the macroscopic level can be modeled more naturally through the LB method. Numerical simulations for the Richtmyer-Meshkov instability show that with the new model the computed interfaces are smoother and more consistent with physical analysis. The growth rates of bubble and spike present a satisfying agreement with the theoretical predictions and other numerical simulations. 展开更多
关键词 lattice Boltzmann method flux limiter technique compressible flows multiple-relaxation-time Richtmyer-Meshkov instability
下载PDF
Flux Limiter Lattice Boltzmann Scheme Approach to Compressible Flows with Flexible Specific-Heat Ratio and Prandtl Number
3
作者 甘延标 许爱国 +1 位作者 张广财 李英骏 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第9期490-498,共9页
We further develop the lattice Boltzmann (LB) model [Physica A 382 (2007) 502] for compressible flows from two aspects. Firstly, we modify the Bhatnagar Gross Krook (BGK) collision term in the LB equation, which... We further develop the lattice Boltzmann (LB) model [Physica A 382 (2007) 502] for compressible flows from two aspects. Firstly, we modify the Bhatnagar Gross Krook (BGK) collision term in the LB equation, which makes the model suitable for simulating flows with different Prandtl numbers. Secondly, the flux limiter finite difference (FLFD) scheme is employed to calculate the convection term of the LB equation, which makes the unphysical oscillations at discontinuities be effectively suppressed and the numerical dissipations be significantly diminished. The proposed model is validated by recovering results of some well-known benchmarks, including (i) The thermal Couette flow; (ii) One- and two-dlmenslonal FLiemann problems. Good agreements are obtained between LB results and the exact ones or previously reported solutions. The flexibility, together with the high accuracy of the new model, endows the proposed model considerable potential for tracking some long-standing problems and for investigating nonlinear nonequilibrium complex systems. 展开更多
关键词 lattice Boltzmann method flux limiter compressible flows Prandtl number
下载PDF
An h-Adaptivity DG Method on Locally Curved Tetrahedral Mesh for Solving Compressible Flows
4
作者 AN Wei HUANG Zenghui LYU Hongqiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第5期702-712,共11页
For the numerical simulation of compressible flows,normally different mesh sizes are expected in different regions.For example,smaller mesh sizes are required to improve the local numerical resolution in the regions w... For the numerical simulation of compressible flows,normally different mesh sizes are expected in different regions.For example,smaller mesh sizes are required to improve the local numerical resolution in the regions where the physical variables vary violently(for example,near the shock waves or in the boundary layers)and larger elements are expected for the regions where the solution is smooth.h-adaptive mesh has been widely used for complex flows.However,there are two difficulties when employing h-adaptivity for high-order discontinuous Galerkin(DG)methods.First,locally curved elements are required to precisely match the solid boundary,which significantly increases the difficulty to conduct the"refining"and"coarsening"operations since the curved information has to be maintained.Second,h-adaptivity could break the partition balancing,which would significantly affect the efficiency of parallel computing.In this paper,a robust and automatic h-adaptive method is developed for high-order DG methods on locally curved tetrahedral mesh,for which the curved geometries are maintained during the h-adaptivity.Furthermore,the reallocating and rebalancing of the computational loads on parallel clusters are conducted to maintain the parallel efficiency.Numerical results indicate that the introduced h-adaptive method is able to generate more reasonable mesh according to the structure of flow-fields. 展开更多
关键词 h-adaptivity discontinuous Galerkin(DG)method curved mesh tetrahedral mesh compressible flows
下载PDF
A GHOST FLUID BASED FRONT TRACKING METHOD FOR MULTIMEDIUM COMPRESSIBLE FLOWS 被引量:3
5
作者 王东红 赵宁 +1 位作者 胡偶 刘剑明 《Acta Mathematica Scientia》 SCIE CSCD 2009年第6期1629-1646,共18页
Recent years the modify ghost fluid method (MGFM) and the real ghost fluid method (RGFM) based on Riemann problem have been developed for multimedium compressible flows. According to authors, these methods have on... Recent years the modify ghost fluid method (MGFM) and the real ghost fluid method (RGFM) based on Riemann problem have been developed for multimedium compressible flows. According to authors, these methods have only been used with the level set technique to track the interface. In this paper, we combine the MCFM and the RGFM respectively with front tracking method, for which the fluid interfaces are explicitly tracked by connected points. The method is tested with some one-dimensional problems, and its applicability is also studied. Furthermore, in order to capture the interface more accurately, especially for strong shock impacting on interface, a shock monitor is proposed to determine the initial states of the Riemann problem. The present method is applied to various one- dimensional problems involving strong shock-interface interaction. An extension of the present method to two dimension is also introduced and preliminary results are given. 展开更多
关键词 front tracking method ghost fluid method multimedium compressible flow Riemann problem
下载PDF
Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows 被引量:1
6
作者 Shu-Xia Zhao Zhao Feng 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第12期348-360,共13页
In this work, incompressible and compressible flows of background gas are characterized in argon inductively coupled plasma by using a fluid model, and the respective influence of the two flows on the plasma propertie... In this work, incompressible and compressible flows of background gas are characterized in argon inductively coupled plasma by using a fluid model, and the respective influence of the two flows on the plasma properties is specified. In the incompressible flow, only the velocity variable is calculated, while in the compressible flow, both the velocity and density variables are calculated. The compressible flow is more realistic; nevertheless, a comparison of the two types of flow is convenient for people to investigate the respective role of velocity and density variables. The peripheral symmetric profile of metastable density near the chamber sidewall is broken in the incompressible flow. At the compressible flow, the electron density increases and the electron temperature decreases. Meanwhile, the metastable density peak shifts to the dielectric window from the discharge center, besides for the peripheral density profile distortion, similar to the incompressible flow.The velocity profile at incompressible flow is not altered when changing the inlet velocity, whereas clear peak shift of velocity profile from the inlet to the outlet at compressible flow is observed as increasing the gas flow rate. The shift of velocity peak is more obvious at low pressures for it is easy to compress the rarefied gas. The velocity profile variations at compressible flow show people the concrete residing processes of background molecule and plasma species in the chamber at different flow rates. Of more significance is it implied that in the usual linear method that people use to calculate the residence time, one important parameter in the gas flow dynamics, needs to be rectified. The spatial profile of pressure simulated exhibits obvious spatial gradient. This is helpful for experimentalists to understand their gas pressure measurements that are always taken at the chamber outlet. At the end, the work specification and limitations are listed. 展开更多
关键词 gas flow inductively coupled plasma compressible flow fluid model
下载PDF
A multiple-relaxation-time lattice Boltzmann method for high-speed compressible flows 被引量:1
7
作者 李凯 钟诚文 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第5期262-269,共8页
This paper presents a coupling compressible model of the lattice Boltzmann method. In this model, the multiplerelaxation-time lattice Boltzmann scheme is used for the evolution of density distribution functions, where... This paper presents a coupling compressible model of the lattice Boltzmann method. In this model, the multiplerelaxation-time lattice Boltzmann scheme is used for the evolution of density distribution functions, whereas the modified single-relaxation-time (SRT) lattice Boltzmann scheme is applied for the evolution of potential energy distribution functions. The governing equations are discretized with the third-order Monotone Upwind Schemes for scalar conservation laws finite volume scheme. The choice of relaxation coefficients is discussed simply. Through the numerical simulations, it is found that compressible flows with strong shocks can be well simulated by present model. The numerical results agree well with the reference results and are better than that of the SRT version. 展开更多
关键词 lattice Boltzmann method multi-relaxation-time compressible flow finite volume method
下载PDF
Simulation of thermoacoustic waves by a pressure-based algorithm for compressible flows 被引量:2
8
作者 Wei Li Qi-Sheng Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期819-824,共6页
A modified SIMPLEC method which can solve compressible flows at low Mach number is introduced and used to study thermoacoustic waves induced by a rapid change of temperature at a solid wall and alternating- direction ... A modified SIMPLEC method which can solve compressible flows at low Mach number is introduced and used to study thermoacoustic waves induced by a rapid change of temperature at a solid wall and alternating- direction flows generated by thermoacoustic effects in a ta- pered resonator. The results indicate that the algorithm adopted in this paper can be used for calculating com- pressible flows and thermoacoustic waves. It is found that the pressure and velocity in the resonator behave as stand- ing waves, and the tapered resonator can suppress high- frequency harmonic waves as observed in a cylindrical res- onator. 展开更多
关键词 compressible flow Thermoacoustic wave Resonator. SIMPLEC
下载PDF
Shocklets in compressible flows
9
作者 袁湘江 田俊武 +1 位作者 沈清 李筠 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第12期1453-1464,共12页
The mechanism of shocklets is studied theoretically and numerically for the stationary fluid, uniform compressible flow, and boundary layer flow. The conditions that trigger shock waves for sound wave, weak discontinu... The mechanism of shocklets is studied theoretically and numerically for the stationary fluid, uniform compressible flow, and boundary layer flow. The conditions that trigger shock waves for sound wave, weak discontinuity, and Tollmien-Schlichting (T-S) wave in compressible flows are investigated. The relations between the three types of waves and shocklets are further analyzed and discussed. Different stages of the shocklet formation process are simulated. The results show that the three waves in compressible flows will transfer to shocklets only when the initial disturbance amplitudes are greater than the certain threshold values. In compressible boundary layers, the shocklets evolved from T-S wave exist only in a finite region near the surface instead of the whole wavefront. 展开更多
关键词 SHOCKLET compressible flow boundary layer Tollmien-Schlichting (T-S)wave
下载PDF
Gas kinetic flux solver based finite volume weighted essentially non-oscillatory scheme for inviscid compressible flows
10
作者 Lan JIANG Jie WU +1 位作者 Liming YANG Hao DONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第6期961-980,共20页
A high-order gas kinetic flux solver(GKFS)is presented for simulating inviscid compressible flows.The weighted essentially non-oscillatory(WENO)scheme on a uniform mesh in the finite volume formulation is combined wit... A high-order gas kinetic flux solver(GKFS)is presented for simulating inviscid compressible flows.The weighted essentially non-oscillatory(WENO)scheme on a uniform mesh in the finite volume formulation is combined with the circular function-based GKFS(C-GKFS)to capture more details of the flow fields with fewer grids.Different from most of the current GKFSs,which are constructed based on the Maxwellian distribution function or its equivalent form,the C-GKFS simplifies the Maxwellian distribution function into the circular function,which ensures that the Euler or Navier-Stokes equations can be recovered correctly.This improves the efficiency of the GKFS and reduces its complexity to facilitate the practical application of engineering.Several benchmark cases are simulated,and good agreement can be obtained in comparison with the references,which demonstrates that the high-order C-GKFS can achieve the desired accuracy. 展开更多
关键词 circular function-based gas kinetic flux solver(C-GKFS) weighted essentially non-oscillatory(WENO)scheme compressible flow finite volume method
下载PDF
An Eulerian SPH method with WENO reconstruction for compressible and incompressible flows
11
作者 Zhentong Wang Chi Zhang +1 位作者 Oskar J.Haidn Xiangyu Hu 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第2期210-221,共12页
While Eulerian smoothed particle hydrodynamics(SPH)method has received increasing attention in scientific and industrial communities owing to its high spatial accuracy,it exhibits excessive numerical dissipation due t... While Eulerian smoothed particle hydrodynamics(SPH)method has received increasing attention in scientific and industrial communities owing to its high spatial accuracy,it exhibits excessive numerical dissipation due to the fact that the flux is derived in particle pair pattern.In this paper,we adopt a one-dimensional weighted essentially non-oscillatory(WENO)reconstruction to reduce the numerical dissipation and improve the overall accuracy particularly in capturing the contact discontinuity.The underlying principle is to construct a 4-point stencil along the interacting line of each particle pair and then the WENO scheme is applied to reconstruct the initial states of the Riemann problem which determines the flow flux.A set of benchmark tests for both compressible and incompressible flows are studied to investigate the accuracy,robustness and versatility of the proposed Eulerian SPH method with the WENO reconstruction(ESPH-WENO). 展开更多
关键词 Eulerian smoothed particle hydrodynamics(SPH) compressible flows incompressible flows Riemann problem
原文传递
Improvement and application of wall function boundary condition for high-speed compressible flows 被引量:16
12
作者 GAO ZhenXun JIANG ChongWen LEE ChunHian 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第10期2501-2515,共15页
In order to develop a wall function boundary condition for high-speed flows so as to reduce the grid-dependence of the simula- tion for the skin friction and heat flux, a research was performed to improve the compress... In order to develop a wall function boundary condition for high-speed flows so as to reduce the grid-dependence of the simula- tion for the skin friction and heat flux, a research was performed to improve the compressible wall function boundary condition proposed by Nichols. Values of parameters in the velocity law-of-the-wall were revised according to numerical experiments and the expression of temperature law-of-the-wall was modified based on theoretical analysis and numerical simulation. Be- sides, the formula of the heat conduction term in near-wall region was derived so that the coupling between the wall function boundary condition and CFD code was realized more accurately. Whereafter, the application study of the modified wall func- tion was carried out. The numerical case of supersonic turbulent boundary layer on a flat plate illustrated that the modified wall function produces reasonable results of skin friction and heat flux, and profiles of velocity, temperature and turbulent eddy viscosity for coarse grids with the initial wall spacing of y+〈400, and that the modifications to the original wall function can obviously improve the simulation precision. As for the application of separation flows, it was found from the numerical cases of supersonic cavity flow and hypersonic axisymmetric compression comer that the compressible velocity law-of-the-wall originally established based on the fully-developed attached turbulent boundary layer approximately holds in the near-wall re- gion inside the separation flows, which ensures that reliable skin friction and heat flux can be given by the wall function inside the separation flows, while for the region near separation and reattachment points, the wall function gives results with a rela- tively large error, because the velocity law-of-the-wall used in the wall function takes on obvious deviation from the real ve- locity profiles near the separation and reattachment points. 展开更多
关键词 compressible flows wall function boundary condition skin friction heat flux numerical simulation
原文传递
Lattice Boltzmann modeling and simulation of compressible flows 被引量:28
13
作者 Ai-Guo Xu Guang-Cai Zhang +2 位作者 Yan-Biao Gan Feng Chen Xi-Jun Yu 《Frontiers in Biology》 CAS CSCD 2012年第5期582-600,共19页
In this mini-review we summarize the progress of Lattice Boltzmann (LB) modeling and simulating compressible flows in our group in recent years. Main contents include (i) Single-Relaxation-Time (SRT) LB model su... In this mini-review we summarize the progress of Lattice Boltzmann (LB) modeling and simulating compressible flows in our group in recent years. Main contents include (i) Single-Relaxation-Time (SRT) LB model supplemented by additional viscosity, (ii) Multiple-Relaxation-Time (MRT) LB model, and (iii) LB study on hydrodynamic instabilities. The former two belong to improvements of physical modeling and the third belongs to simulation or application. The SRT-LB model sup- plemented by additional viscosity keeps the original framework of Lattice Bhatnagar-Gross Krook (LBGK). So, it is easier and more convenient for previous SRT-LB users. The MRT-LB is a com- pletely new framework for physical modeling. It significantly extends the range of LB applications. The cost is longer computational time. The developed SRT-LB and MRT-LB are complementary from the sides of convenience and applicability. 展开更多
关键词 lattice Boltzmann modeling compressible flows shock waves hydrodynamic instability
原文传递
A unified theory for gas dynamics and aeroacoustics in viscous compressible flows.PartⅡ.Sources on solid boundary 被引量:2
14
作者 Feng Mao Luoqin Liu +3 位作者 Linlin Kang Jiezhi Wu Pengjunyi Zhang Zhenhua Wan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第12期58-66,共9页
This work attempts to extend the fundamental theory for classic gas dynamics to viscous compressible flow,of which aeroacoustics will naturally be a special branch.As a continuation of Part I.Unbounded fluid(Mao et al... This work attempts to extend the fundamental theory for classic gas dynamics to viscous compressible flow,of which aeroacoustics will naturally be a special branch.As a continuation of Part I.Unbounded fluid(Mao et al.,2022),this paper studies the source of longitudinal field at solid boundary,caused by the on-wall kinematic and viscous dynamic coupling of longitudinal and transverse processes.We find that at this situation the easiest choice for the two independent thermodynamic variables is the dimensionless pressure P and temperature T.The two-level structure of boundary dynamics of longitudinal field is obtained by applying the continuity equation and its normal derivative to the surface.We show that the boundary dilatation flux represents faithfully the boundary production of vortex sound and entropy sound,and the mutual generation mechanism of the longitudinal and transverse fields on the boundary does not occur symmetrically"at the samc level,but appears along a zigzag route.At the first level,it is the pressure gradient that generates vorticity unidirectionally;while at the second level,it is the vorticity that generates dilatation unidirectionally. 展开更多
关键词 Gasdynamics-aeroacoustics viscous compressible flow Advective wave equations Thermodynamic variables DILATATION Process splittingand coupling
原文传递
Development and Comparative Studies of Three Non-free Parameter Lattice Boltzmann Models for Simulation of Compressible Flows 被引量:3
15
作者 L.M.Yang C.Shu J.Wu 《Advances in Applied Mathematics and Mechanics》 SCIE 2012年第4期454-472,共19页
This paper at first shows the details of finite volume-based lattice Boltzmann method(FV-LBM)for simulation of compressible flows with shock waves.In the FV-LBM,the normal convective flux at the interface of a cell is... This paper at first shows the details of finite volume-based lattice Boltzmann method(FV-LBM)for simulation of compressible flows with shock waves.In the FV-LBM,the normal convective flux at the interface of a cell is evaluated by using one-dimensional compressible lattice Boltzmann model,while the tangential flux is calculated using the same way as used in the conventional Euler solvers.The paper then presents a platform to construct one-dimensional compressible lattice Boltzmann model for its use in FV-LBM.The platform is formed from the conservation forms of moments.Under the platform,both the equilibrium distribution functions and lattice velocities can be determined,and therefore,non-free parameter model can be developed.The paper particularly presents three typical non-free parameter models,D1Q3,D1Q4 and D1Q5.The performances of these three models for simulation of compressible flows are investigated by a brief analysis and their application to solve some one-dimensional and two-dimensional test problems.Numerical results showed that D1Q3 model costs the least computation time and D1Q4 and D1Q5 models have the wider application range of Mach number.From the results,it seems that D1Q4 model could be the best choice for the FVLBM simulation of hypersonic flows. 展开更多
关键词 FV-LBM non-free parameter models compressible inviscid flows
原文传递
HIGH-ORDER I-STABLE CENTERED DIFFERENCE SCHEMES FOR VISCOUS COMPRESSIBLE FLOWS
16
作者 WeizhuBao ShiJin 《Journal of Computational Mathematics》 SCIE CSCD 2003年第1期101-112,共12页
In this paper we present high-order I-stable centered difference schemes for the numerical simulation of viscous compressible flows. Here I-stability refers to time discretizations whose linear stability regions conta... In this paper we present high-order I-stable centered difference schemes for the numerical simulation of viscous compressible flows. Here I-stability refers to time discretizations whose linear stability regions contain part of the imaginary axis. This class of schemes has a numerical stability independent of the cell-Reynolds number Re, thus allows one to simulate high Reynolds number flows with relatively larger Re, or coarser grids for a fixed Re. On the other hand, Re cannot be arbitrarily large if one tries to obtain adequate numerical resolution of the viscous behavior. We investigate the behavior of high-order I-stable schemes for Burgers' equation and the compressible Navier-Stokes equations. We demonstrate that, for the second order scheme, Re ≤ 3 is an appropriate constraint for numerical resolution of the viscous profile, while for the fourth-order schemes the constraint can be relaxed to Re ≤ 6.0ur study indicates that the fourth order scheme is preferable: better accuracy, higher resolution, and larger cell-Reynolds numbers. 展开更多
关键词 I-stable Viscous compressible flow Burgers' equation Cell-Reynolds number constraint.
原文传递
Multi-scale Equations for Compressible Turbulent Flows
17
作者 高智 庄逢甘 《Journal of Shanghai University(English Edition)》 CAS 2004年第3期241-244,共4页
The short-range property of interactions between scales in the compressible turbulent flow was examined. An estimation of the short-range scale scope and some formulae for the short-range eddy stress and heat transfe... The short-range property of interactions between scales in the compressible turbulent flow was examined. An estimation of the short-range scale scope and some formulae for the short-range eddy stress and heat transfer etc. were given. A concept of resonant-range interactions between extremely contiguous scales was introduced and some formulae for the resonant-range eddy stress and heat transfer etc. were also given. Multi-scale equations for the compressible turbulent flows were presented. The multi-scale equations are approximately closed and do not contain any empirical constants. The compressibility effects on turbulence are determined by the Farve averaged variables and the nonlinear relationships between the Farve- and physical-averaged variables. 展开更多
关键词 TURBULENCE compressible flow interactions between scales multi-scale equations.
下载PDF
Fourier Collocation and Reduced Basis Methods for Fast Modeling of Compressible Flows
18
作者 Jian Yu Deep Ray Jan S.Hesthaven 《Communications in Computational Physics》 SCIE 2022年第8期595-637,共43页
A projection-based reduced order model(ROM)based on the Fourier collocation method is proposed for compressible flows.The incorporation of localized artificial viscosity model and filtering is pursued to enhance the r... A projection-based reduced order model(ROM)based on the Fourier collocation method is proposed for compressible flows.The incorporation of localized artificial viscosity model and filtering is pursued to enhance the robustness and accuracy of the ROM for shock-dominated flows.Furthermore,for Euler systems,ROMs built on the conservative and the skew-symmetric forms of the governing equation are compared.To ensure efficiency,the discrete empirical interpolation method(DEIM)is employed.An alternative reduction approach,exploring the sparsity of viscosity is also investigated for the viscous terms.A number of one-and two-dimensional benchmark cases are considered to test the performance of the proposed models.Results show that stable computations for shock-dominated cases can be achieved with ROMs built on both the conservative and the skew-symmetric forms without additional stabilization components other than the viscosity model and filtering.Under the same parameters,the skew-symmetric form shows better robustness and accuracy than its conservative counterpart,while the conservative form is superior in terms of efficiency. 展开更多
关键词 Projection-based reduced order modeling Fourier collocation artificial viscosity compressible flow
原文传递
Lattice Boltzmann and Finite Volume Simulation of Inviscid Compressible Flows with Curved Boundary
19
作者 Kun Qu Chang Shu Yong Tian Chew 《Advances in Applied Mathematics and Mechanics》 SCIE 2010年第5期573-586,共14页
A 2D lattice Boltzmann model for inviscid compressible flows was proposed in this paper.Finite volume method was implemented on 2D curvilinear structural grids to solve the lattice BGK-Boltzmann equations.MUSCL scheme... A 2D lattice Boltzmann model for inviscid compressible flows was proposed in this paper.Finite volume method was implemented on 2D curvilinear structural grids to solve the lattice BGK-Boltzmann equations.MUSCL scheme was used to perform interpolation.The obtained results agree excellently well with experimental and previous numerical results. 展开更多
关键词 Lattice Boltzmann method compressible flow finite volume method structural grids
原文传递
A COMPLETE BOUNDARY INTEGRAL FORMULATION FOR STEADY COMPRESSIBLE INVISCID FLOWS GOVERNED BY NONLINEAR EQUATIONS
20
作者 Yang Zuo-sheng Nanjing Aeronautical Institute 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1991年第4期333-338,共6页
A complete boundary integral formulation for steady compressible inviscid flows governed by nonlinear equations is established by using ρV as variable. Thus, the dimensionality of the problem to be solved is reduced ... A complete boundary integral formulation for steady compressible inviscid flows governed by nonlinear equations is established by using ρV as variable. Thus, the dimensionality of the problem to be solved is reduced by one and the computational mesh to be generated is needed only on the boundary of the domain. 展开更多
关键词 A COMPLETE BOUNDARY INTEGRAL FORMULATION FOR STEADY compressible INVISCID flows GOVERNED BY NONLINEAR EQUATIONS PV
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部