Ultra-high performance cement-based composites (UHPCC) is promising in construction of concrete structures that suffer impact and explosive loads.In this study,a reference UHPCC mixture with no fiber reinforcement and...Ultra-high performance cement-based composites (UHPCC) is promising in construction of concrete structures that suffer impact and explosive loads.In this study,a reference UHPCC mixture with no fiber reinforcement and four mixtures with a single type of fiber reinforcement or hybrid fiber reinforcements of straight smooth and end hook type of steel fibers were prepared.Split Hopkinson pressure bar (SHPB) was performed to investigate the dynamic compression behavior of UHPCC and X-CT test and 3D reconstruction technology were used to indicate the failure process of UHPCC under impact loading.Results show that UHPCC with 1% straight smooth fiber and 2% end hook fiber reinforcements demonstrated the best static and dynamic mechanical properties.When the hybrid steel fiber reinforcements are added in the concrete,it may need more impact energy to break the matrix and to pull out the fiber reinforcements,thus,the mixture with hybrid steel fiber reinforcements demonstrates excellent dynamic compressive performance.展开更多
The results of investigations of compressed reinforced masonry walls subjected to axial compression are presented. Tests were carried out using specimens made of clay bricks and cement-lime mortar. As reinforcement, s...The results of investigations of compressed reinforced masonry walls subjected to axial compression are presented. Tests were carried out using specimens made of clay bricks and cement-lime mortar. As reinforcement, smooth and spiral twisted longitudinal rods, two types of structural wire mesh and truss type reinforcement were used. Two percentages of bed joint reinforcement, about 0.1% and 0.05% were applied. For each type of reinforcement, three masonry walls were tested. Additionally, nine unreinforced models were also tested. The main aim of the investigations presented is to determine the effect of different types of reinforcement on the load capacity and failure. Measurement of the strains of reinforcing bars permitted the recording of the strain level at the moment of crack appearance and also at the moment of failure.展开更多
Static and fatigue tests under compression load were made on impacted AS4/PEEK and T300/913C graphite/epoxy with [45/90/-45/0]5S stacking sequence. The comparison of the damage tolerance assessment for thermosetting a...Static and fatigue tests under compression load were made on impacted AS4/PEEK and T300/913C graphite/epoxy with [45/90/-45/0]5S stacking sequence. The comparison of the damage tolerance assessment for thermosetting and thermoplastic composites shows that thermoplastics are more damage tolerant under compression. Impacted thermoplastic composites have excellent compression-compression fatigue behavior. The damage growth life is only a few percent of their total fatigue life and no regular damage growth can be found. Some design principles for thermosetting composite structures may still be used.展开更多
The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding ba...The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding basalt fibers(BFs)and using external restraints,such as a fiber-reinforced polymer(FRP)jacket or a PVC pipe.Samples were tested under axial compression.The results showed that RAC(50%replacement of aggregate)containing 0.2%BFs had the best mechanical properties.Using either BFs or PVC reinforcement had a slight effect on the loadbearing capacity and mode of failure.With different levels of BFs,the compressive strengths of the specimens reinforced with 1-layer and 3-layer basalt fiber reinforced polymer(BFRP)increased by 6.7%–10.5%and 16.5%–23.7%,respectively,and the ultimate strains increased by 48.5%–80.7%and 97.1%–141.1%,respectively.The peak stress of the 3-layer BFRP-PVC increased by 42.2%,and the ultimate strain improved by 131.3%,relative to the control.This reinforcement combined the high tensile strength of BFRP,which improved the post-peak behavior,and PVC,which enhanced the structural durability.In addition,to investigate the influence of the various constraints on compressive behavior,the stress-strain response was analyzed.Based on the analysis of experimental results,a peak stress-strain model and an amended ultimate stress-strain model were proposed.The models were verified as well;the result showed that the predictions from calculations are generally consistent with the experimental data(error within 10%).The results of this study provide a theoretical basis and reference for future applications of fiber-reinforced recycled concrete.展开更多
In this paper, the strengthening of thin-walled metallic shells with the application of CFRP (carbon fibre reinforced polymer) has been investigated. To lower down the downside of the lower stiffness exhibited by CF...In this paper, the strengthening of thin-walled metallic shells with the application of CFRP (carbon fibre reinforced polymer) has been investigated. To lower down the downside of the lower stiffness exhibited by CFRP shells and to diminish the major problem associated with steel shells, a new composite sandwich structure has been introduced in this paper and effect of CFRP reinforcements under axial compression has been studied through three kinds of analytical procedures; the linear Eigen value problem, the modified RS (reduced stiffness) analysis and the fully nonlinear numerical experiment. With these multiple treatments it has been suggested that recently developed modified RS analysis which effectively compute the lower bounds provides the significant information to evaluate the buckling capacity of reinforced shells that display the unstable behaviour and imperfection-sensitivity than the general RS Analysis. This paper also illustrates the application of the methodology to cases of axial loaded shells with the varying thickness of veneers of CFRP.展开更多
基金Funded by the National Key Research and Development Program of China(No.2018YFC0705400)National Natural Science Foundation of China(No.51678142)the Fundamental Research Funds for the Central Universities。
文摘Ultra-high performance cement-based composites (UHPCC) is promising in construction of concrete structures that suffer impact and explosive loads.In this study,a reference UHPCC mixture with no fiber reinforcement and four mixtures with a single type of fiber reinforcement or hybrid fiber reinforcements of straight smooth and end hook type of steel fibers were prepared.Split Hopkinson pressure bar (SHPB) was performed to investigate the dynamic compression behavior of UHPCC and X-CT test and 3D reconstruction technology were used to indicate the failure process of UHPCC under impact loading.Results show that UHPCC with 1% straight smooth fiber and 2% end hook fiber reinforcements demonstrated the best static and dynamic mechanical properties.When the hybrid steel fiber reinforcements are added in the concrete,it may need more impact energy to break the matrix and to pull out the fiber reinforcements,thus,the mixture with hybrid steel fiber reinforcements demonstrates excellent dynamic compressive performance.
文摘The results of investigations of compressed reinforced masonry walls subjected to axial compression are presented. Tests were carried out using specimens made of clay bricks and cement-lime mortar. As reinforcement, smooth and spiral twisted longitudinal rods, two types of structural wire mesh and truss type reinforcement were used. Two percentages of bed joint reinforcement, about 0.1% and 0.05% were applied. For each type of reinforcement, three masonry walls were tested. Additionally, nine unreinforced models were also tested. The main aim of the investigations presented is to determine the effect of different types of reinforcement on the load capacity and failure. Measurement of the strains of reinforcing bars permitted the recording of the strain level at the moment of crack appearance and also at the moment of failure.
文摘Static and fatigue tests under compression load were made on impacted AS4/PEEK and T300/913C graphite/epoxy with [45/90/-45/0]5S stacking sequence. The comparison of the damage tolerance assessment for thermosetting and thermoplastic composites shows that thermoplastics are more damage tolerant under compression. Impacted thermoplastic composites have excellent compression-compression fatigue behavior. The damage growth life is only a few percent of their total fatigue life and no regular damage growth can be found. Some design principles for thermosetting composite structures may still be used.
基金supported by the Natural Science Foundation Project of Liaoning Provincial Department of Education of China under Grant No.JJL201915404,Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ22E080024 and Zhejiang Province Department of Education Fund of China under Grant No.Y202146776.
文摘The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding basalt fibers(BFs)and using external restraints,such as a fiber-reinforced polymer(FRP)jacket or a PVC pipe.Samples were tested under axial compression.The results showed that RAC(50%replacement of aggregate)containing 0.2%BFs had the best mechanical properties.Using either BFs or PVC reinforcement had a slight effect on the loadbearing capacity and mode of failure.With different levels of BFs,the compressive strengths of the specimens reinforced with 1-layer and 3-layer basalt fiber reinforced polymer(BFRP)increased by 6.7%–10.5%and 16.5%–23.7%,respectively,and the ultimate strains increased by 48.5%–80.7%and 97.1%–141.1%,respectively.The peak stress of the 3-layer BFRP-PVC increased by 42.2%,and the ultimate strain improved by 131.3%,relative to the control.This reinforcement combined the high tensile strength of BFRP,which improved the post-peak behavior,and PVC,which enhanced the structural durability.In addition,to investigate the influence of the various constraints on compressive behavior,the stress-strain response was analyzed.Based on the analysis of experimental results,a peak stress-strain model and an amended ultimate stress-strain model were proposed.The models were verified as well;the result showed that the predictions from calculations are generally consistent with the experimental data(error within 10%).The results of this study provide a theoretical basis and reference for future applications of fiber-reinforced recycled concrete.
文摘In this paper, the strengthening of thin-walled metallic shells with the application of CFRP (carbon fibre reinforced polymer) has been investigated. To lower down the downside of the lower stiffness exhibited by CFRP shells and to diminish the major problem associated with steel shells, a new composite sandwich structure has been introduced in this paper and effect of CFRP reinforcements under axial compression has been studied through three kinds of analytical procedures; the linear Eigen value problem, the modified RS (reduced stiffness) analysis and the fully nonlinear numerical experiment. With these multiple treatments it has been suggested that recently developed modified RS analysis which effectively compute the lower bounds provides the significant information to evaluate the buckling capacity of reinforced shells that display the unstable behaviour and imperfection-sensitivity than the general RS Analysis. This paper also illustrates the application of the methodology to cases of axial loaded shells with the varying thickness of veneers of CFRP.