The roles of diurnal temperature in providing heat accumulation and chilling requirements for vegetation spring phenology differ.Although previous studies have established a stronger correlation between leaf onset and...The roles of diurnal temperature in providing heat accumulation and chilling requirements for vegetation spring phenology differ.Although previous studies have established a stronger correlation between leaf onset and diurnal temperature than between leaf onset and average temperature,current research on modeling spring phenology based on diurnal temperature indicators remains limited.In this study,we confirmed the start of the growing season(SOS)sensitivity to diurnal temperature and average temperature in boreal forest.The estimation of SOS was carried out by employing K-Nearest Neighbor Regression(KNR-TDN)model,Random Forest Regres-sion(RFR-TDN)model,eXtreme Gradient Boosting(XGB-TDN)model and Light Gradient Boosting Machine model(LightGBM-TDN)driven by diurnal temperature indicators during 1982-2015,and the SOS was projected from 2015 to 2100 based on the Coupled Model Intercomparison Project Phase 6(CMIP6)climate scenario datasets.The sensitivity of boreal forest SOS to daytime temperature is greater than that to average temperature and nighttime temperature.The LightGBM-TDN model perform best across all vegetation types,exhibiting the lowest RMSE and bias compared to the KNR-TDN model,RFR-TDN model and XGB-TDN model.By incorporating diurn-al temperature indicators instead of relying only on average temperature indicators to simulate spring phenology,an improvement in the accuracy of the model is achieved.Furthermore,the preseason accumulated daytime temperature,daytime temperature and snow cover end date emerged as significant drivers of the SOS simulation in the study area.The simulation results based on LightGBM-TDN model exhibit a trend of advancing SOS followed by stabilization under future climate scenarios.This study underscores the potential of diurn-al temperature indicators as a viable alternative to average temperature indicators in driving spring phenology models,offering a prom-ising new method for simulating spring phenology.展开更多
The spring snow cover(SC)over the western Tibetan Plateau(TP)(TPSC)(W_TPSC)and eastern TPSC(E_TPSC)have displayed remarkable decreasing and increasing trends,respectively,during 1985–2020.The current work investigate...The spring snow cover(SC)over the western Tibetan Plateau(TP)(TPSC)(W_TPSC)and eastern TPSC(E_TPSC)have displayed remarkable decreasing and increasing trends,respectively,during 1985–2020.The current work investigates the possible mechanisms accounting for these distinct TPSC changes.Our results indicate that the decrease in W_TPSC is primarily attributed to rising temperatures,while the increase in E_TPSC is closely linked to enhanced precipitation.Local circulation analysis shows that the essential system responsible for the TPSC changes is a significant anticyclonic system centered over the northwestern TP.The anomalous descending motion and adiabatic heating linked to this anticyclone leads to warmer temperatures and consequent snowmelt over the western TP.Conversely,anomalous easterly winds along the southern flank of this anticyclone serve to transport additional moisture from the North Pacific,leading to an increase in snowfall over the eastern TP.Further analysis reveals that the anomalous anticyclone is associated with an atmospheric wave pattern that originates from upstream regions.Springtime warming of the subtropical North Atlantic(NA)sea surface temperature(SST)induces an atmospheric pattern resembling a wave train that travels eastward across the Eurasian continent before reaching the TP.Furthermore,the decline in winter sea ice(SIC)over the Barents Sea exerts a persistent warming influence on the atmosphere,inducing an anomalous atmospheric circulation that propagates southeastward and strengthens the northwest TP anticyclone in spring.Additionally,an enhancement of subtropical stationary waves has resulted in significant increases in easterly moisture fluxes over the coastal areas of East Asia,which further promotes more snowfall over eastern TP.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.42201374,42071359)。
文摘The roles of diurnal temperature in providing heat accumulation and chilling requirements for vegetation spring phenology differ.Although previous studies have established a stronger correlation between leaf onset and diurnal temperature than between leaf onset and average temperature,current research on modeling spring phenology based on diurnal temperature indicators remains limited.In this study,we confirmed the start of the growing season(SOS)sensitivity to diurnal temperature and average temperature in boreal forest.The estimation of SOS was carried out by employing K-Nearest Neighbor Regression(KNR-TDN)model,Random Forest Regres-sion(RFR-TDN)model,eXtreme Gradient Boosting(XGB-TDN)model and Light Gradient Boosting Machine model(LightGBM-TDN)driven by diurnal temperature indicators during 1982-2015,and the SOS was projected from 2015 to 2100 based on the Coupled Model Intercomparison Project Phase 6(CMIP6)climate scenario datasets.The sensitivity of boreal forest SOS to daytime temperature is greater than that to average temperature and nighttime temperature.The LightGBM-TDN model perform best across all vegetation types,exhibiting the lowest RMSE and bias compared to the KNR-TDN model,RFR-TDN model and XGB-TDN model.By incorporating diurn-al temperature indicators instead of relying only on average temperature indicators to simulate spring phenology,an improvement in the accuracy of the model is achieved.Furthermore,the preseason accumulated daytime temperature,daytime temperature and snow cover end date emerged as significant drivers of the SOS simulation in the study area.The simulation results based on LightGBM-TDN model exhibit a trend of advancing SOS followed by stabilization under future climate scenarios.This study underscores the potential of diurn-al temperature indicators as a viable alternative to average temperature indicators in driving spring phenology models,offering a prom-ising new method for simulating spring phenology.
基金This research is funded by the National Natural Science Foundation of China(Grant No.42075050)Fundamental Research Funds for the Central Universities(Grant No.K20220232).
文摘The spring snow cover(SC)over the western Tibetan Plateau(TP)(TPSC)(W_TPSC)and eastern TPSC(E_TPSC)have displayed remarkable decreasing and increasing trends,respectively,during 1985–2020.The current work investigates the possible mechanisms accounting for these distinct TPSC changes.Our results indicate that the decrease in W_TPSC is primarily attributed to rising temperatures,while the increase in E_TPSC is closely linked to enhanced precipitation.Local circulation analysis shows that the essential system responsible for the TPSC changes is a significant anticyclonic system centered over the northwestern TP.The anomalous descending motion and adiabatic heating linked to this anticyclone leads to warmer temperatures and consequent snowmelt over the western TP.Conversely,anomalous easterly winds along the southern flank of this anticyclone serve to transport additional moisture from the North Pacific,leading to an increase in snowfall over the eastern TP.Further analysis reveals that the anomalous anticyclone is associated with an atmospheric wave pattern that originates from upstream regions.Springtime warming of the subtropical North Atlantic(NA)sea surface temperature(SST)induces an atmospheric pattern resembling a wave train that travels eastward across the Eurasian continent before reaching the TP.Furthermore,the decline in winter sea ice(SIC)over the Barents Sea exerts a persistent warming influence on the atmosphere,inducing an anomalous atmospheric circulation that propagates southeastward and strengthens the northwest TP anticyclone in spring.Additionally,an enhancement of subtropical stationary waves has resulted in significant increases in easterly moisture fluxes over the coastal areas of East Asia,which further promotes more snowfall over eastern TP.