Based on the facility of the Shanghai Laser Electron Gamma Source (SLEGS), the transmutation for nuclear wastes such as 137^Cs and 129^I is investigated. It is found that nuclear waste can be transmuted efficiently ...Based on the facility of the Shanghai Laser Electron Gamma Source (SLEGS), the transmutation for nuclear wastes such as 137^Cs and 129^I is investigated. It is found that nuclear waste can be transmuted efficiently via photonuclear reaction triggered by gamma photons generated from Compton backscattering between CO2 laser photons and 3.5 GeV electrons. The nuclear activities of 137^Cs and 129^I are evaluated and compared with the results of transmutation triggered by bremsstrahlung gamma photons driven by ultra intense laser. Due to the better character of gamma photon spectrum as well as the high brightness of gamma photons, the transmutation rate of Compton backscattering method is much higher than that of the bremsstrahlung method.展开更多
The beam energy is measured in the e^+e^- collision by using Compton backscattering. The uncertainty of this measurement process is studied by virtue of analytical formulas, and the special effects of variant energy ...The beam energy is measured in the e^+e^- collision by using Compton backscattering. The uncertainty of this measurement process is studied by virtue of analytical formulas, and the special effects of variant energy spread and energy drift on the systematic uncertainty estimation are also studied with the Monte Carlo sampling technique. These quantitative conclusions are especially important for understanding the uncertainty of the beam energy measurement system.展开更多
基金Knowledge Innovation Project of Chinese Academy of Sciences (KJCX2-SW-N13)China Postdoctoral ScienceFoundation, National Natural Science Foundation of China (10475108, 10605036, 10405032)+1 种基金One Hundred Person Project of SINAPShanghai Development Foundation for Science and Technology (06QA14062)
文摘Based on the facility of the Shanghai Laser Electron Gamma Source (SLEGS), the transmutation for nuclear wastes such as 137^Cs and 129^I is investigated. It is found that nuclear waste can be transmuted efficiently via photonuclear reaction triggered by gamma photons generated from Compton backscattering between CO2 laser photons and 3.5 GeV electrons. The nuclear activities of 137^Cs and 129^I are evaluated and compared with the results of transmutation triggered by bremsstrahlung gamma photons driven by ultra intense laser. Due to the better character of gamma photon spectrum as well as the high brightness of gamma photons, the transmutation rate of Compton backscattering method is much higher than that of the bremsstrahlung method.
基金Supported by National Natural Science Foundation of China(NSFC)(11375206,10775142,10825524,11125525,11235011)
文摘The beam energy is measured in the e^+e^- collision by using Compton backscattering. The uncertainty of this measurement process is studied by virtue of analytical formulas, and the special effects of variant energy spread and energy drift on the systematic uncertainty estimation are also studied with the Monte Carlo sampling technique. These quantitative conclusions are especially important for understanding the uncertainty of the beam energy measurement system.