This paper rewrites the famous energy formula of quantum theory, E = hν, as a formula that is physically easier to understand. If we let m<sub>e</sub> be the rest mass of the electron, c the speed of ligh...This paper rewrites the famous energy formula of quantum theory, E = hν, as a formula that is physically easier to understand. If we let m<sub>e</sub> be the rest mass of the electron, c the speed of light in a vacuum, and λ<sub>c</sub> the Compton wavelength of the electron, then the product of the three physical constants, m<sub>e</sub>cλ<sub>c</sub>, matches the value of the Planck constant. In the usual interpretation, h is regarded as a universal constant on a par with c. However, this paper holds that, contrary to the historical viewpoint, the Planck constant is logically nothing more than replacement of me</sub>cλ<sub>c</sub> with the alphabetic letter h. Thus, this paper looks for an energy formula that does not contain h. E = hν is a formula that was assumed at the beginning, and then subsequently verified through experiment. The formula was not derived logically. In contrast, the energy formula derived in this paper can be derived logically. The formula derived in this paper also has a clear physical meaning, and it can be concluded that it is a superior formula to E = hν.展开更多
文摘This paper rewrites the famous energy formula of quantum theory, E = hν, as a formula that is physically easier to understand. If we let m<sub>e</sub> be the rest mass of the electron, c the speed of light in a vacuum, and λ<sub>c</sub> the Compton wavelength of the electron, then the product of the three physical constants, m<sub>e</sub>cλ<sub>c</sub>, matches the value of the Planck constant. In the usual interpretation, h is regarded as a universal constant on a par with c. However, this paper holds that, contrary to the historical viewpoint, the Planck constant is logically nothing more than replacement of me</sub>cλ<sub>c</sub> with the alphabetic letter h. Thus, this paper looks for an energy formula that does not contain h. E = hν is a formula that was assumed at the beginning, and then subsequently verified through experiment. The formula was not derived logically. In contrast, the energy formula derived in this paper can be derived logically. The formula derived in this paper also has a clear physical meaning, and it can be concluded that it is a superior formula to E = hν.