Coherent optical control within or through scattering media via wavefront shaping has seen broad applications since its invention around 2007.Wavefront shaping is aimed at overcoming the strong scattering,featured by ...Coherent optical control within or through scattering media via wavefront shaping has seen broad applications since its invention around 2007.Wavefront shaping is aimed at overcoming the strong scattering,featured by random interference,namely speckle patterns.This randomness occurs due to the refractive index inhomogeneity in complex media like biological tissue or the modal dispersion in multimode fiber,yet this randomness is actually deterministic and potentially can be time reversal or precompensated.Various wavefront shaping approaches,such as optical phase conjugation,iterative optimization,and transmission matrix measurement,have been developed to generate tight and intense optical delivery or high-resolution image of an optical object behind or within a scattering medium.The performance of these modula-tions,however,is far from satisfaction.Most recently,artifcial intelligence has brought new inspirations to this field,providing exciting hopes to tackle the challenges by mapping the input and output optical patterns and building a neuron network that inherently links them.In this paper,we survey the developments to date on this topic and briefly discuss our views on how to harness machine learning(deep learning in particular)for further advancements in the field.展开更多
Metasurface-based imaging has attracted considerable attention owing to its compactness,multifunctionality,and subwavelength coding capability.With the integration of computational imaging techniques,researchers have ...Metasurface-based imaging has attracted considerable attention owing to its compactness,multifunctionality,and subwavelength coding capability.With the integration of computational imaging techniques,researchers have actively explored the extended capabilities of metasurfaces,enabling a wide range of imaging methods.We present an overview of the recent progress in metasurface-based imaging techniques,focusing on the perspective of computational imaging.Specifically,we categorize and review existing metasurface-based imaging into three main groups,including(i)conventional metasurface design employing canonical methods,(ii)computation introduced independently in either the imaging process or postprocessing,and(iii)an end-to-end computation-optimized imaging system based upon metasurfaces.We highlight the advantages and challenges associated with each computational metasurface-based imaging technique and discuss the potential and future prospects of the computational boosted metaimager.展开更多
Owing to the constraints on the fabrication ofγ-ray coding plates with many pixels,few studies have been carried out onγ-ray computational ghost imaging.Thus,the development of coding plates with fewer pixels is ess...Owing to the constraints on the fabrication ofγ-ray coding plates with many pixels,few studies have been carried out onγ-ray computational ghost imaging.Thus,the development of coding plates with fewer pixels is essential to achieveγ-ray computational ghost imaging.Based on the regional similarity between Hadamard subcoding plates,this study presents an optimization method to reduce the number of pixels of Hadamard coding plates.First,a moving distance matrix was obtained to describe the regional similarity quantitatively.Second,based on the matrix,we used two ant colony optimization arrangement algorithms to maximize the reuse of pixels in the regional similarity area and obtain new compressed coding plates.With full sampling,these two algorithms improved the pixel utilization of the coding plate,and the compression ratio values were 54.2%and 58.9%,respectively.In addition,three undersampled sequences(the Harr,Russian dolls,and cake-cutting sequences)with different sampling rates were tested and discussed.With different sampling rates,our method reduced the number of pixels of all three sequences,especially for the Russian dolls and cake-cutting sequences.Therefore,our method can reduce the number of pixels,manufacturing cost,and difficulty of the coding plate,which is beneficial for the implementation and application ofγ-ray computational ghost imaging.展开更多
Imaging through fluctuating scattering media such as fog is of challenge since it seriously degrades the image quality.We investigate how the image quality of computational ghost imaging is reduced by fluctuating fog ...Imaging through fluctuating scattering media such as fog is of challenge since it seriously degrades the image quality.We investigate how the image quality of computational ghost imaging is reduced by fluctuating fog and how to obtain a high-quality defogging ghost image. We show theoretically and experimentally that the photon number fluctuations introduced by fluctuating fog is the reason for ghost image degradation. An algorithm is proposed to process the signals collected by the computational ghost imaging device to eliminate photon number fluctuations of different measurement events. Thus, a high-quality defogging ghost image is reconstructed even though fog is evenly distributed on the optical path. A nearly 100% defogging ghost image is obtained by further using a cycle generative adversarial network to process the reconstructed defogging image.展开更多
Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent com...Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent computing, subverting the imaging mechanism of traditional optical imaging which only relies on orderly information transmission. To meet the high-precision requirements of traditional optical imaging for optical processing and adjustment, as well as to solve its problems of being sensitive to gravity and temperature in use, we establish an optical imaging system model from the perspective of computational optical imaging and studies how to design and solve the imaging consistency problem of optical system under the influence of gravity, thermal effect, stress, and other external environment to build a high robustness optical system. The results show that the high robustness interval of the optical system exists and can effectively reduce the sensitivity of the optical system to the disturbance of each link, thus realizing the high robustness of optical imaging.展开更多
In a single-pixel fast imaging setup,the data collected by the single-pixel detector needs to be processed by a computer,but the speed of the latter will affect the image reconstruction time.Here we propose two kinds ...In a single-pixel fast imaging setup,the data collected by the single-pixel detector needs to be processed by a computer,but the speed of the latter will affect the image reconstruction time.Here we propose two kinds of setups which are able to transform non-visible into visible light imaging,wherein their computing process is replaced by a camera integration mode.The image captured by the camera has a low contrast,so here we present an algorithm that can realize a high quality image in near-infrared to visible cross-waveband imaging.The scheme is verified both by simulation and in actual experiments.The setups demonstrate the great potential for single-pixel imaging and high-speed cross-waveband imaging for future practical applications.展开更多
An extreme ultraviolet solar corona multispectral imager can allow direct observation of high temperature coronal plasma,which is related to solar flares,coronal mass ejections and other significant coronal activities...An extreme ultraviolet solar corona multispectral imager can allow direct observation of high temperature coronal plasma,which is related to solar flares,coronal mass ejections and other significant coronal activities.This manuscript proposes a novel end-to-end computational design method for an extreme ultraviolet(EUV)solar corona multispectral imager operating at wavelengths near 100 nm,including a stray light suppression design and computational image recovery.To suppress the strong stray light from the solar disk,an outer opto-mechanical structure is designed to protect the imaging component of the system.Considering the low reflectivity(less than 70%)and strong-scattering(roughness)of existing extreme ultraviolet optical elements,the imaging component comprises only a primary mirror and a curved grating.A Lyot aperture is used to further suppress any residual stray light.Finally,a deep learning computational imaging method is used to correct the individual multi-wavelength images from the original recorded multi-slit data.In results and data,this can achieve a far-field angular resolution below 7",and spectral resolution below 0.05 nm.The field of view is±3 R_(☉)along the multi-slit moving direction,where R☉represents the radius of the solar disk.The ratio of the corona's stray light intensity to the solar center's irradiation intensity is less than 10-6 at the circle of 1.3 R_(☉).展开更多
Imaging through diffusers presents a challenging problem with various digital image reconstruction solutions demonstrated to date using computers.Here,we present a computer-free,all-optical image reconstruction method...Imaging through diffusers presents a challenging problem with various digital image reconstruction solutions demonstrated to date using computers.Here,we present a computer-free,all-optical image reconstruction method to see through random diffusers at the speed of light.Using deep learning,a set of transmissive diffractive surfaces are trained to all-optically reconstruct images of arbitrary objects that are completely covered by unknown,random phase diffusers.After the training stage,which is a one-time effort,the resulting diffractive surfaces are fabricated and form a passive optical network that is physically positioned between the unknown object and the image plane to all-optically reconstruct the object pattern through an unknown,new phase diffuser.We experimentally demonstrated this concept using coherent THz illumination and all-optically reconstructed objects distorted by unknown,random diffusers,never used during training.Unlike digital methods,all-optical diffractive reconstructions do not require power except for the illumination light.This diffractive solution to see through diffusers can be extended to other wavelengths,and might fuel various applications in biomedical imaging,astronomy,atmospheric sciences,oceanography,security,robotics,autonomous vehicles,among many others.展开更多
Computational imaging describes the whole imaging process from the perspective of light transport and information transmission, features traditional optical computing capabilities, and assists in breaking through the ...Computational imaging describes the whole imaging process from the perspective of light transport and information transmission, features traditional optical computing capabilities, and assists in breaking through the limitations of visual information recording. Progress in computational imaging promotes the development of diverse basic and applied disciplines. In this review, we provide an overview of the fundamental principles and methods in computational imaging, the history of this field, and the important roles that it plays in the development of science. We review the most recent and promising advances in computational imaging, from the perspective of different dimensions of visual signals, including spatial dimension, temporal dimension, angular dimension, spectral dimension, and phase. We also discuss some topics worth studying for future developments in computational imaging.展开更多
Computational ghost imaging(CGI)provides an elegant framework for indirect imaging,but its application has been restricted by low imaging performance.Herein,we propose a novel approach that significantly improves the ...Computational ghost imaging(CGI)provides an elegant framework for indirect imaging,but its application has been restricted by low imaging performance.Herein,we propose a novel approach that significantly improves the imaging performance of CGI.In this scheme,we optimize the conventional CGI data processing algorithm by using a novel compressed sensing(CS)algorithm based on a deep convolution generative adversarial network(DCGAN).CS is used to process the data output by a conventional CGI device.The processed data are trained by a DCGAN to reconstruct the image.Qualitative and quantitative results show that this method significantly improves the quality of reconstructed images by jointly training a generator and the optimization process for reconstruction via meta-learning.Moreover,the background noise can be eliminated well by this method.展开更多
Spectral imaging is an important tool for a wide variety of applications. We present a technique for spectral imaging using computational imaging pattern based on compressive sensing (CS). The spectral and spatial i...Spectral imaging is an important tool for a wide variety of applications. We present a technique for spectral imaging using computational imaging pattern based on compressive sensing (CS). The spectral and spatial infor- mation is simultaneously obtained using a fiber spectrometer and the spatial light modulation without mechanical scanning. The method allows high-speed, stable, and sub sampling acquisition of spectral data from specimens. The relationship between sampling rate and image quality is discussed and two CS algorithms are compared.展开更多
Return signal processing and reconstruction plays a pivotal role in coherent field imaging, having a significant in- fluence on the quality of the reconstructed image. To reduce the required samples and accelerate the...Return signal processing and reconstruction plays a pivotal role in coherent field imaging, having a significant in- fluence on the quality of the reconstructed image. To reduce the required samples and accelerate the sampling process, we propose a genuine sparse reconstruction scheme based on compressed sensing theory. By analyzing the sparsity of the received signal in the Fourier spectrum domain, we accomplish an effective random projection and then reconstruct the return signal from as little as 10% of traditional samples, finally acquiring the target image precisely. The results of the numerical simulations and practical experiments verify the correctness of the proposed method, providing an efficient processing approach for imaging fast-moving targets in the future.展开更多
Objectives: This study aims to evaluate the level of X-ray doses used in childhood’s head as Local Diagnostic Reference Levels (LDRLs) in computed tomography (CT) at a university hospital in Côte d’Ivoire. The ...Objectives: This study aims to evaluate the level of X-ray doses used in childhood’s head as Local Diagnostic Reference Levels (LDRLs) in computed tomography (CT) at a university hospital in Côte d’Ivoire. The Diagnostic Reference Level (DRL) have been set up and used to prevent unusually high radiation doses used in radiology departments and is therefore an optimization tool for practices and procedures in medical X-ray imaging for the radiation protection of patients. Methods: A prospective study of volume CT dose index (CTDI<sub>vol</sub>) and dose length product (DLP) was performed on images of childhood’s head obtained from a CT-scanner of 64 bars equipped with the tube current modulation capability and manufactured by Hitachi Medical System. 122 CT-scan data from 55 childhood’s head were analyzed. The scan data were stratified in four age groups: Results: The 75th percentile of CTDI<sub>vol</sub> and DLP (set as LDRL) obtained with respect to the stratified age groups are: 22.5 mGy and 452.5 mGy∙cm, 27.7 mGy and 690.6 mGy∙cm, 28 mGy and 722.4 mGy∙cm, 33.6 mGy and 736.8 mGy∙cm respectively. These outcome values increase with respect to the age of pediatric patients and are comparable to DRLs values obtained internationally. Conclusions: Obtaining good image quality while using low dose in children’s head computed tomography for radiation protection require to setup more surveys in Côte d’Ivoire for regional and national DRL. We proposed through this survey LDRLs in terms of CTDI<sub>vol</sub> and DLP, comparable to international DRLs values. This survey will be strengthened by additional surveys in order to obtain national DRLs for the radiation protection of the child patient in Côte d’Ivoire.展开更多
BACKGROUND Computed tomography(CT),liver stiffness measurement(LSM),and magnetic resonance imaging(MRI)are non-invasive diagnostic methods for esophageal varices(EV)and for the prediction of high-bleeding-risk EV(HREV...BACKGROUND Computed tomography(CT),liver stiffness measurement(LSM),and magnetic resonance imaging(MRI)are non-invasive diagnostic methods for esophageal varices(EV)and for the prediction of high-bleeding-risk EV(HREV)in cirrhotic patients.However,the clinical use of these methods is controversial.AIM To evaluate the accuracy of LSM,CT,and MRI in diagnosing EV and predicting HREV in cirrhotic patients.METHODS We performed literature searches in multiple databases,including Pub Med,Embase,Cochrane,CNKI,and Wanfang databases,for articles that evaluated the accuracy of LSM,CT,and MRI as candidates for the diagnosis of EV and prediction of HREV in cirrhotic patients.Summary sensitivity and specificity,positive likelihood ratio and negative likelihood ratio,diagnostic odds ratio,and the areas under the summary receiver operating characteristic curves were analyzed.The quality of the articles was assessed using the quality assessment of diagnostic accuracy studies-2 tool.Heterogeneity was examined by Q-statistic test and I2 index,and sources of heterogeneity were explored using metaregression and subgroup analysis.Publication bias was evaluated using Deek’s funnel plot.All statistical analyses were conducted using Stata12.0,Meta Disc1.4,and Rev Man5.3.RESULTS Overall,18,17,and 7 relevant articles on the accuracy of LSM,CT,and MRI in evaluating EV and HREV were retrieved.A significant heterogeneity was observed in all analyses(P<0.05).The areas under the summary receiver operating characteristic curves of LSM,CT,and MRI in diagnosing EV and predicting HREV were 0.86(95%confidence interval[CI]:0.83-0.89),0.91(95%CI:0.88-0.93),and 0.86(95%CI:0.83-0.89),and 0.85(95%CI:0.81-0.88),0.94(95%CI:0.91-0.96),and 0.83(95%CI:0.79-0.86),respectively,with sensitivities of 0.84(95%CI:0.78-0.89),0.91(95%CI:0.87-0.94),and 0.81(95%CI:0.76-0.86),and 0.81(95%CI:0.75-0.86),0.88(95%CI:0.82-0.92),and 0.80(95%CI:0.72-0.86),and specificities of 0.71(95%CI:0.60-0.80),0.75(95%CI:0.68-0.82),and 0.82(95%CI:0.70-0.89),and 0.73(95%CI:0.66-0.80),0.87(95%CI:0.81-0.92),and 0.72(95%CI:0.62-0.80),respectively.The corresponding positive likelihood ratios were 2.91,3.67,and 4.44,and 3.04,6.90,and2.83;the negative likelihood ratios were 0.22,0.12,and 0.23,and 0.26,0.14,and 0.28;the diagnostic odds ratios were 13.01,30.98,and 19.58,and 11.93,49.99,and 10.00.CT scanner is the source of heterogeneity.There was no significant difference in diagnostic threshold effects(P>0.05)or publication bias(P>0.05).CONCLUSION Based on the meta-analysis of observational studies,it is suggested that CT imaging,a non-invasive diagnostic method,is the best choice for the diagnosis of EV and prediction of HREV in cirrhotic patients compared with LSM and MRI.展开更多
Hepatocellular carcinoma(HCC) is one of the major causes of morbidity and mortality in patients with chronic liver disease. Transarterial chemoembolization(TACE) can significantly improve the survival rate of patients...Hepatocellular carcinoma(HCC) is one of the major causes of morbidity and mortality in patients with chronic liver disease. Transarterial chemoembolization(TACE) can significantly improve the survival rate of patients with HCC and is the first treatment choice for patients who are not suitable for surgical resections. The evaluation of the response to TACE treatment affects not only the assessment of the therapy efficacy but also the development of the next step in the treatment plan. The use of imaging to examine changes in tumor volume to assess the response of solid tumors to treatment has been controversial. In recent years, the emergence of new imaging technology has made it possible to observe the response of tumors to treatment prior to any morphological changes. In this article, the advances in studies reporting the use of computed tomography perfusion imaging, diffusionweighted magnetic resonance imaging(MRI), intravoxel incoherent motion, diffusion kurtosis imaging, magnetic resonance spectroscopy, magnetic resonance perfusionweighted imaging, blood oxygen level-dependent MRI, positron emission tomography(PET)/computed tomography and PET/MRI to assess the TACE treatment response are reviewed.展开更多
Inflammatory fibroid polyp(IFP) is a rare benign lesion of the gastrointestinal tract. We report a case of computed tomography(CT) imaging finding of a gastric IFP with massive fibrosis. CT scans showed thickening of ...Inflammatory fibroid polyp(IFP) is a rare benign lesion of the gastrointestinal tract. We report a case of computed tomography(CT) imaging finding of a gastric IFP with massive fibrosis. CT scans showed thickening of submucosal layer with overlying mucosal hyperenhancement in the gastric antrum. The submucosal layer showed increased enhancement on delayed phase imaging. An antrectomy with gastroduodenostomy was performed because gastric cancer was suspected, particularly signet ring cell carcinoma. The histopathological diagnosis was an IFP with massive fibrosis. The authors suggest that when the submucosal layer of the gastric wall is markedly thickened with delayed enhancement and preservation of the mucosal layer, an IFP with massive fibrosis should be considered in the differential diagnosis.展开更多
Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the ...Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications.展开更多
Multiple lymphomatous polyposis(MLP)is an uncommon type of gastrointestinal lymphoma characterized by the presence of multiple polyps along the gastrointestinal tract.Most of this entity is in fact considered the coun...Multiple lymphomatous polyposis(MLP)is an uncommon type of gastrointestinal lymphoma characterized by the presence of multiple polyps along the gastrointestinal tract.Most of this entity is in fact considered the counterpart of gastrointestinal tract involvement for mantle cell lymphoma(MCL).To our knowledge,there have been no reports on[fluorine-18]-fluorodeoxy-glucose(18F-FDG)-positron emission tomography(PET)/computed tomography(CT)imaging for gastrointestinal MCL with MLP.We present the results of 18F-FDG PET/CT imaging in a patient with gastrointestinal tract involvement of MCL showing continuous MLP from the stomach to the rectum and intestinal intussusception.FDG-PET/CT findings were false negative in typical MLP spreading widely over the gastrointestinal tract,but uptake was noted in large lesions with deep infiltration considered atypical as MLP.On FDG-PET/CT imaging,the Ki-67proliferative index,which is a cell proliferation marker,showed neither correlation with the presence of uptake nor the maximum standardized uptake value.展开更多
Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred...Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred bioreactor with punched impeller is established by the computational fluid dynamics (CFD), using a rotating coordinate system and sliding mesh to describe the relative motion between impeller and baffles. The simulation and experiment results of flow and temperature field prove their warps are less than 10% and the mathematic model can well simulate the fields, which will also provide the study on optimized-design and scale-up of bioreactors with reference value.展开更多
We report an overlapping sampling scheme to accelerate computational ghost imaging for imaging moving targets,based on reordering a set of Hadamard modulation matrices by means of a heuristic algorithm. The new conden...We report an overlapping sampling scheme to accelerate computational ghost imaging for imaging moving targets,based on reordering a set of Hadamard modulation matrices by means of a heuristic algorithm. The new condensed overlapped matrices are then designed to shorten and optimize encoding of the overlapped patterns, which are shown to be much superior to the random matrices. In addition, we apply deep learning to image the target, and use the signal acquired by the bucket detector and corresponding real image to train the neural network. Detailed comparisons show that our new method can improve the imaging speed by as much as an order of magnitude, and improve the image quality as well.展开更多
基金supported by the National Natural Science Foundation of China(Nos.81671726 and 81627805)the Hong Kong Research Grant Council(No.25204416)+1 种基金the Shenzhen Science and Technology Innovation Commission(No.JCYJ20170818104421564)the Hong Kong Innovation and Technology Commission(No.ITS/022/18).
文摘Coherent optical control within or through scattering media via wavefront shaping has seen broad applications since its invention around 2007.Wavefront shaping is aimed at overcoming the strong scattering,featured by random interference,namely speckle patterns.This randomness occurs due to the refractive index inhomogeneity in complex media like biological tissue or the modal dispersion in multimode fiber,yet this randomness is actually deterministic and potentially can be time reversal or precompensated.Various wavefront shaping approaches,such as optical phase conjugation,iterative optimization,and transmission matrix measurement,have been developed to generate tight and intense optical delivery or high-resolution image of an optical object behind or within a scattering medium.The performance of these modula-tions,however,is far from satisfaction.Most recently,artifcial intelligence has brought new inspirations to this field,providing exciting hopes to tackle the challenges by mapping the input and output optical patterns and building a neuron network that inherently links them.In this paper,we survey the developments to date on this topic and briefly discuss our views on how to harness machine learning(deep learning in particular)for further advancements in the field.
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFA1205000 and 2022YFA1207200)the National Natural Science Foundation of China(Grant Nos.12274217,61971465,and 12104225)the Fundamental Research Funds for the Central Universities,China(Grant No.0210-14380184)
文摘Metasurface-based imaging has attracted considerable attention owing to its compactness,multifunctionality,and subwavelength coding capability.With the integration of computational imaging techniques,researchers have actively explored the extended capabilities of metasurfaces,enabling a wide range of imaging methods.We present an overview of the recent progress in metasurface-based imaging techniques,focusing on the perspective of computational imaging.Specifically,we categorize and review existing metasurface-based imaging into three main groups,including(i)conventional metasurface design employing canonical methods,(ii)computation introduced independently in either the imaging process or postprocessing,and(iii)an end-to-end computation-optimized imaging system based upon metasurfaces.We highlight the advantages and challenges associated with each computational metasurface-based imaging technique and discuss the potential and future prospects of the computational boosted metaimager.
基金supported by the Youth Science Foundation of Sichuan Province(Nos.22NSFSC3816 and 2022NSFSC1231)the General Project of the National Natural Science Foundation of China(Nos.12075039 and 41874121)the Key Project of the National Natural Science Foundation of China(No.U19A2086).
文摘Owing to the constraints on the fabrication ofγ-ray coding plates with many pixels,few studies have been carried out onγ-ray computational ghost imaging.Thus,the development of coding plates with fewer pixels is essential to achieveγ-ray computational ghost imaging.Based on the regional similarity between Hadamard subcoding plates,this study presents an optimization method to reduce the number of pixels of Hadamard coding plates.First,a moving distance matrix was obtained to describe the regional similarity quantitatively.Second,based on the matrix,we used two ant colony optimization arrangement algorithms to maximize the reuse of pixels in the regional similarity area and obtain new compressed coding plates.With full sampling,these two algorithms improved the pixel utilization of the coding plate,and the compression ratio values were 54.2%and 58.9%,respectively.In addition,three undersampled sequences(the Harr,Russian dolls,and cake-cutting sequences)with different sampling rates were tested and discussed.With different sampling rates,our method reduced the number of pixels of all three sequences,especially for the Russian dolls and cake-cutting sequences.Therefore,our method can reduce the number of pixels,manufacturing cost,and difficulty of the coding plate,which is beneficial for the implementation and application ofγ-ray computational ghost imaging.
基金supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2022MF249)。
文摘Imaging through fluctuating scattering media such as fog is of challenge since it seriously degrades the image quality.We investigate how the image quality of computational ghost imaging is reduced by fluctuating fog and how to obtain a high-quality defogging ghost image. We show theoretically and experimentally that the photon number fluctuations introduced by fluctuating fog is the reason for ghost image degradation. An algorithm is proposed to process the signals collected by the computational ghost imaging device to eliminate photon number fluctuations of different measurement events. Thus, a high-quality defogging ghost image is reconstructed even though fog is evenly distributed on the optical path. A nearly 100% defogging ghost image is obtained by further using a cycle generative adversarial network to process the reconstructed defogging image.
文摘Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent computing, subverting the imaging mechanism of traditional optical imaging which only relies on orderly information transmission. To meet the high-precision requirements of traditional optical imaging for optical processing and adjustment, as well as to solve its problems of being sensitive to gravity and temperature in use, we establish an optical imaging system model from the perspective of computational optical imaging and studies how to design and solve the imaging consistency problem of optical system under the influence of gravity, thermal effect, stress, and other external environment to build a high robustness optical system. The results show that the high robustness interval of the optical system exists and can effectively reduce the sensitivity of the optical system to the disturbance of each link, thus realizing the high robustness of optical imaging.
文摘In a single-pixel fast imaging setup,the data collected by the single-pixel detector needs to be processed by a computer,but the speed of the latter will affect the image reconstruction time.Here we propose two kinds of setups which are able to transform non-visible into visible light imaging,wherein their computing process is replaced by a camera integration mode.The image captured by the camera has a low contrast,so here we present an algorithm that can realize a high quality image in near-infrared to visible cross-waveband imaging.The scheme is verified both by simulation and in actual experiments.The setups demonstrate the great potential for single-pixel imaging and high-speed cross-waveband imaging for future practical applications.
基金This study is partially supported by the National Natural Science Foundation of China(NSFC)(62005120,62125504).
文摘An extreme ultraviolet solar corona multispectral imager can allow direct observation of high temperature coronal plasma,which is related to solar flares,coronal mass ejections and other significant coronal activities.This manuscript proposes a novel end-to-end computational design method for an extreme ultraviolet(EUV)solar corona multispectral imager operating at wavelengths near 100 nm,including a stray light suppression design and computational image recovery.To suppress the strong stray light from the solar disk,an outer opto-mechanical structure is designed to protect the imaging component of the system.Considering the low reflectivity(less than 70%)and strong-scattering(roughness)of existing extreme ultraviolet optical elements,the imaging component comprises only a primary mirror and a curved grating.A Lyot aperture is used to further suppress any residual stray light.Finally,a deep learning computational imaging method is used to correct the individual multi-wavelength images from the original recorded multi-slit data.In results and data,this can achieve a far-field angular resolution below 7",and spectral resolution below 0.05 nm.The field of view is±3 R_(☉)along the multi-slit moving direction,where R☉represents the radius of the solar disk.The ratio of the corona's stray light intensity to the solar center's irradiation intensity is less than 10-6 at the circle of 1.3 R_(☉).
基金The authors acknowledge the U.S.National Science Foundation and Fujikura.
文摘Imaging through diffusers presents a challenging problem with various digital image reconstruction solutions demonstrated to date using computers.Here,we present a computer-free,all-optical image reconstruction method to see through random diffusers at the speed of light.Using deep learning,a set of transmissive diffractive surfaces are trained to all-optically reconstruct images of arbitrary objects that are completely covered by unknown,random phase diffusers.After the training stage,which is a one-time effort,the resulting diffractive surfaces are fabricated and form a passive optical network that is physically positioned between the unknown object and the image plane to all-optically reconstruct the object pattern through an unknown,new phase diffuser.We experimentally demonstrated this concept using coherent THz illumination and all-optically reconstructed objects distorted by unknown,random diffusers,never used during training.Unlike digital methods,all-optical diffractive reconstructions do not require power except for the illumination light.This diffractive solution to see through diffusers can be extended to other wavelengths,and might fuel various applications in biomedical imaging,astronomy,atmospheric sciences,oceanography,security,robotics,autonomous vehicles,among many others.
基金Project supported by the National Natural Science Foundation of China (Nos. 61327902 and 61631009)
文摘Computational imaging describes the whole imaging process from the perspective of light transport and information transmission, features traditional optical computing capabilities, and assists in breaking through the limitations of visual information recording. Progress in computational imaging promotes the development of diverse basic and applied disciplines. In this review, we provide an overview of the fundamental principles and methods in computational imaging, the history of this field, and the important roles that it plays in the development of science. We review the most recent and promising advances in computational imaging, from the perspective of different dimensions of visual signals, including spatial dimension, temporal dimension, angular dimension, spectral dimension, and phase. We also discuss some topics worth studying for future developments in computational imaging.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11704221,11574178,and 61675115)the Taishan Scholar Project of Shandong Province,China(Grant No.tsqn201812059)。
文摘Computational ghost imaging(CGI)provides an elegant framework for indirect imaging,but its application has been restricted by low imaging performance.Herein,we propose a novel approach that significantly improves the imaging performance of CGI.In this scheme,we optimize the conventional CGI data processing algorithm by using a novel compressed sensing(CS)algorithm based on a deep convolution generative adversarial network(DCGAN).CS is used to process the data output by a conventional CGI device.The processed data are trained by a DCGAN to reconstruct the image.Qualitative and quantitative results show that this method significantly improves the quality of reconstructed images by jointly training a generator and the optimization process for reconstruction via meta-learning.Moreover,the background noise can be eliminated well by this method.
基金Supported by the National Major Scientific Instruments Development Project of China under Grant No 2013YQ030595the National Natural Science Foundation of China under Grant Nos 11675014,61601442,61605218,61474123 and 61575207+2 种基金the Science and Technology Innovation Foundation of Chinese Academy of Sciences under Grant No CXJJ-16S047,the National Defense Science and Technology Innovation Foundation of Chinese Academy of Sciencesthe Program of International S&T Cooperation under Grant No 2016YFE0131500the Advance Research Project under Grant No 30102070101
文摘Spectral imaging is an important tool for a wide variety of applications. We present a technique for spectral imaging using computational imaging pattern based on compressive sensing (CS). The spectral and spatial infor- mation is simultaneously obtained using a fiber spectrometer and the spatial light modulation without mechanical scanning. The method allows high-speed, stable, and sub sampling acquisition of spectral data from specimens. The relationship between sampling rate and image quality is discussed and two CS algorithms are compared.
基金supported by the National Natural Science Foundation of China(Grant No.61505248)the Fund from Chinese Academy of Sciences,the Light of"Western"Talent Cultivation Plan"Dr.Western Fund Project"(Grant No.Y429621213)
文摘Return signal processing and reconstruction plays a pivotal role in coherent field imaging, having a significant in- fluence on the quality of the reconstructed image. To reduce the required samples and accelerate the sampling process, we propose a genuine sparse reconstruction scheme based on compressed sensing theory. By analyzing the sparsity of the received signal in the Fourier spectrum domain, we accomplish an effective random projection and then reconstruct the return signal from as little as 10% of traditional samples, finally acquiring the target image precisely. The results of the numerical simulations and practical experiments verify the correctness of the proposed method, providing an efficient processing approach for imaging fast-moving targets in the future.
文摘Objectives: This study aims to evaluate the level of X-ray doses used in childhood’s head as Local Diagnostic Reference Levels (LDRLs) in computed tomography (CT) at a university hospital in Côte d’Ivoire. The Diagnostic Reference Level (DRL) have been set up and used to prevent unusually high radiation doses used in radiology departments and is therefore an optimization tool for practices and procedures in medical X-ray imaging for the radiation protection of patients. Methods: A prospective study of volume CT dose index (CTDI<sub>vol</sub>) and dose length product (DLP) was performed on images of childhood’s head obtained from a CT-scanner of 64 bars equipped with the tube current modulation capability and manufactured by Hitachi Medical System. 122 CT-scan data from 55 childhood’s head were analyzed. The scan data were stratified in four age groups: Results: The 75th percentile of CTDI<sub>vol</sub> and DLP (set as LDRL) obtained with respect to the stratified age groups are: 22.5 mGy and 452.5 mGy∙cm, 27.7 mGy and 690.6 mGy∙cm, 28 mGy and 722.4 mGy∙cm, 33.6 mGy and 736.8 mGy∙cm respectively. These outcome values increase with respect to the age of pediatric patients and are comparable to DRLs values obtained internationally. Conclusions: Obtaining good image quality while using low dose in children’s head computed tomography for radiation protection require to setup more surveys in Côte d’Ivoire for regional and national DRL. We proposed through this survey LDRLs in terms of CTDI<sub>vol</sub> and DLP, comparable to international DRLs values. This survey will be strengthened by additional surveys in order to obtain national DRLs for the radiation protection of the child patient in Côte d’Ivoire.
基金Supported by the State Key Projects Specialized on Infectious Diseases,No.2017ZX10203202–004Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding,No.ZYLX201610+1 种基金Beijing Municipal Administration of Hospitals’Ascent Plan,No.DFL20151602Digestive Medical Coordinated Development Center of Beijing Hospitals Authority,No.XXT24.
文摘BACKGROUND Computed tomography(CT),liver stiffness measurement(LSM),and magnetic resonance imaging(MRI)are non-invasive diagnostic methods for esophageal varices(EV)and for the prediction of high-bleeding-risk EV(HREV)in cirrhotic patients.However,the clinical use of these methods is controversial.AIM To evaluate the accuracy of LSM,CT,and MRI in diagnosing EV and predicting HREV in cirrhotic patients.METHODS We performed literature searches in multiple databases,including Pub Med,Embase,Cochrane,CNKI,and Wanfang databases,for articles that evaluated the accuracy of LSM,CT,and MRI as candidates for the diagnosis of EV and prediction of HREV in cirrhotic patients.Summary sensitivity and specificity,positive likelihood ratio and negative likelihood ratio,diagnostic odds ratio,and the areas under the summary receiver operating characteristic curves were analyzed.The quality of the articles was assessed using the quality assessment of diagnostic accuracy studies-2 tool.Heterogeneity was examined by Q-statistic test and I2 index,and sources of heterogeneity were explored using metaregression and subgroup analysis.Publication bias was evaluated using Deek’s funnel plot.All statistical analyses were conducted using Stata12.0,Meta Disc1.4,and Rev Man5.3.RESULTS Overall,18,17,and 7 relevant articles on the accuracy of LSM,CT,and MRI in evaluating EV and HREV were retrieved.A significant heterogeneity was observed in all analyses(P<0.05).The areas under the summary receiver operating characteristic curves of LSM,CT,and MRI in diagnosing EV and predicting HREV were 0.86(95%confidence interval[CI]:0.83-0.89),0.91(95%CI:0.88-0.93),and 0.86(95%CI:0.83-0.89),and 0.85(95%CI:0.81-0.88),0.94(95%CI:0.91-0.96),and 0.83(95%CI:0.79-0.86),respectively,with sensitivities of 0.84(95%CI:0.78-0.89),0.91(95%CI:0.87-0.94),and 0.81(95%CI:0.76-0.86),and 0.81(95%CI:0.75-0.86),0.88(95%CI:0.82-0.92),and 0.80(95%CI:0.72-0.86),and specificities of 0.71(95%CI:0.60-0.80),0.75(95%CI:0.68-0.82),and 0.82(95%CI:0.70-0.89),and 0.73(95%CI:0.66-0.80),0.87(95%CI:0.81-0.92),and 0.72(95%CI:0.62-0.80),respectively.The corresponding positive likelihood ratios were 2.91,3.67,and 4.44,and 3.04,6.90,and2.83;the negative likelihood ratios were 0.22,0.12,and 0.23,and 0.26,0.14,and 0.28;the diagnostic odds ratios were 13.01,30.98,and 19.58,and 11.93,49.99,and 10.00.CT scanner is the source of heterogeneity.There was no significant difference in diagnostic threshold effects(P>0.05)or publication bias(P>0.05).CONCLUSION Based on the meta-analysis of observational studies,it is suggested that CT imaging,a non-invasive diagnostic method,is the best choice for the diagnosis of EV and prediction of HREV in cirrhotic patients compared with LSM and MRI.
基金Supported by Projects of Department of Science and Technology of Sichuan Province,No.2016JY0105
文摘Hepatocellular carcinoma(HCC) is one of the major causes of morbidity and mortality in patients with chronic liver disease. Transarterial chemoembolization(TACE) can significantly improve the survival rate of patients with HCC and is the first treatment choice for patients who are not suitable for surgical resections. The evaluation of the response to TACE treatment affects not only the assessment of the therapy efficacy but also the development of the next step in the treatment plan. The use of imaging to examine changes in tumor volume to assess the response of solid tumors to treatment has been controversial. In recent years, the emergence of new imaging technology has made it possible to observe the response of tumors to treatment prior to any morphological changes. In this article, the advances in studies reporting the use of computed tomography perfusion imaging, diffusionweighted magnetic resonance imaging(MRI), intravoxel incoherent motion, diffusion kurtosis imaging, magnetic resonance spectroscopy, magnetic resonance perfusionweighted imaging, blood oxygen level-dependent MRI, positron emission tomography(PET)/computed tomography and PET/MRI to assess the TACE treatment response are reviewed.
文摘Inflammatory fibroid polyp(IFP) is a rare benign lesion of the gastrointestinal tract. We report a case of computed tomography(CT) imaging finding of a gastric IFP with massive fibrosis. CT scans showed thickening of submucosal layer with overlying mucosal hyperenhancement in the gastric antrum. The submucosal layer showed increased enhancement on delayed phase imaging. An antrectomy with gastroduodenostomy was performed because gastric cancer was suspected, particularly signet ring cell carcinoma. The histopathological diagnosis was an IFP with massive fibrosis. The authors suggest that when the submucosal layer of the gastric wall is markedly thickened with delayed enhancement and preservation of the mucosal layer, an IFP with massive fibrosis should be considered in the differential diagnosis.
基金Supported by the Hundred Talents Program of Chinese Academy of Sciencesthe National Basic Research Program of China under Grant No 2014CB339803+2 种基金the Major National Development Project of Scientific Instrument and Equipment under Grant No2011YQ150021the National Natural Science Foundation of China under Grant Nos 61575214,61574155,61404149 and 61404150the Shanghai Municipal Commission of Science and Technology under Grant Nos 14530711300,15560722000 and 15ZR1447500
文摘Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications.
基金Supported by Department of Cancer Pathology,Hokkaido University Graduate School of Medicine,Sapporo,Japan
文摘Multiple lymphomatous polyposis(MLP)is an uncommon type of gastrointestinal lymphoma characterized by the presence of multiple polyps along the gastrointestinal tract.Most of this entity is in fact considered the counterpart of gastrointestinal tract involvement for mantle cell lymphoma(MCL).To our knowledge,there have been no reports on[fluorine-18]-fluorodeoxy-glucose(18F-FDG)-positron emission tomography(PET)/computed tomography(CT)imaging for gastrointestinal MCL with MLP.We present the results of 18F-FDG PET/CT imaging in a patient with gastrointestinal tract involvement of MCL showing continuous MLP from the stomach to the rectum and intestinal intussusception.FDG-PET/CT findings were false negative in typical MLP spreading widely over the gastrointestinal tract,but uptake was noted in large lesions with deep infiltration considered atypical as MLP.On FDG-PET/CT imaging,the Ki-67proliferative index,which is a cell proliferation marker,showed neither correlation with the presence of uptake nor the maximum standardized uptake value.
基金This project is supported by Provincial Science Technology Committee of Jiangsu China(No.BJ99025).
文摘Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred bioreactor with punched impeller is established by the computational fluid dynamics (CFD), using a rotating coordinate system and sliding mesh to describe the relative motion between impeller and baffles. The simulation and experiment results of flow and temperature field prove their warps are less than 10% and the mathematic model can well simulate the fields, which will also provide the study on optimized-design and scale-up of bioreactors with reference value.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0403301, 2017YFB0503301, and2018YFB0504302)the National Natural Science Foundation of China (Grant Nos. 11991073, 61975229, and Y8JC011L51)+2 种基金the Key Program of CAS (Grant No. XDB17030500)the Civil Space Project (Grant No. D040301)the Science Challenge Project (Grant No. TZ2018005)。
文摘We report an overlapping sampling scheme to accelerate computational ghost imaging for imaging moving targets,based on reordering a set of Hadamard modulation matrices by means of a heuristic algorithm. The new condensed overlapped matrices are then designed to shorten and optimize encoding of the overlapped patterns, which are shown to be much superior to the random matrices. In addition, we apply deep learning to image the target, and use the signal acquired by the bucket detector and corresponding real image to train the neural network. Detailed comparisons show that our new method can improve the imaging speed by as much as an order of magnitude, and improve the image quality as well.