Industrial big data integration and sharing(IBDIS)is of great significance in managing and providing data for big data analysis in manufacturing systems.A novel fog-computing-based IBDIS approach called Fog-IBDIS is p...Industrial big data integration and sharing(IBDIS)is of great significance in managing and providing data for big data analysis in manufacturing systems.A novel fog-computing-based IBDIS approach called Fog-IBDIS is proposed in order to integrate and share industrial big data with high raw data security and low network traffic loads by moving the integration task from the cloud to the edge of networks.First,a task flow graph(TFG)is designed to model the data analysis process.The TFG is composed of several tasks,which are executed by the data owners through the Fog-IBDIS platform in order to protect raw data privacy.Second,the function of Fog-IBDIS to enable data integration and sharing is presented in five modules:TFG management,compilation and running control,the data integration model,the basic algorithm library,and the management component.Finally,a case study is presented to illustrate the implementation of Fog-IBDIS,which ensures raw data security by deploying the analysis tasks executed by the data generators,and eases the network traffic load by greatly reducing the volume of transmitted data.展开更多
How to deal with the collaboration between task decomposition and task scheduling is the key problem of the integrated manufacturing system for complex products. With the development of manufacturing technology, we ca...How to deal with the collaboration between task decomposition and task scheduling is the key problem of the integrated manufacturing system for complex products. With the development of manufacturing technology, we can probe a new way to solve this problem. Firstly, a new method for task granularity quantitative analysis is put forward, which can precisely evaluate the task granularity of complex product cooperation workflow in the integrated manufacturing system, on the above basis; this method is used to guide the coarse-grained task decomposition and recombine the subtasks with low cohesion coefficient. Then, a multi-objective optimieation model and an algorithm are set up for the scheduling optimization of task scheduling. Finally, the application feasibility of the model and algorithm is ultimately validated through an application case study.展开更多
基金This work was supported in part by the National Natural Science Foundation of China(51435009)Shanghai Sailing Program(19YF1401500)the Fundamental Research Funds for the Central Universities(2232019D3-34).
文摘Industrial big data integration and sharing(IBDIS)is of great significance in managing and providing data for big data analysis in manufacturing systems.A novel fog-computing-based IBDIS approach called Fog-IBDIS is proposed in order to integrate and share industrial big data with high raw data security and low network traffic loads by moving the integration task from the cloud to the edge of networks.First,a task flow graph(TFG)is designed to model the data analysis process.The TFG is composed of several tasks,which are executed by the data owners through the Fog-IBDIS platform in order to protect raw data privacy.Second,the function of Fog-IBDIS to enable data integration and sharing is presented in five modules:TFG management,compilation and running control,the data integration model,the basic algorithm library,and the management component.Finally,a case study is presented to illustrate the implementation of Fog-IBDIS,which ensures raw data security by deploying the analysis tasks executed by the data generators,and eases the network traffic load by greatly reducing the volume of transmitted data.
基金supported by the National Natural Science Foundation of China(71401131)the MOE(Ministry of Education in China)Project of Humanities and Social Sciences(13XJC630011)the Ministry of Education Research Fund for the Doctoral Program of Higher Education(20120184120040)
文摘How to deal with the collaboration between task decomposition and task scheduling is the key problem of the integrated manufacturing system for complex products. With the development of manufacturing technology, we can probe a new way to solve this problem. Firstly, a new method for task granularity quantitative analysis is put forward, which can precisely evaluate the task granularity of complex product cooperation workflow in the integrated manufacturing system, on the above basis; this method is used to guide the coarse-grained task decomposition and recombine the subtasks with low cohesion coefficient. Then, a multi-objective optimieation model and an algorithm are set up for the scheduling optimization of task scheduling. Finally, the application feasibility of the model and algorithm is ultimately validated through an application case study.