期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Review of brain-computer interface based on steady-state visual evoked potential 被引量:3
1
作者 Siyu Liu Deyu Zhang +6 位作者 Ziyu Liu Mengzhen Liu Zhiyuan Ming Tiantian Liu Dingjie Suo Shintaro Funahashi Tianyi Yan 《Brain Science Advances》 2022年第4期258-275,共18页
The brain-computer interface(BCI)technology has received lots of attention in the field of scientific research because it can help disabled people improve their quality of life.Steady-state visual evoked potential(SSV... The brain-computer interface(BCI)technology has received lots of attention in the field of scientific research because it can help disabled people improve their quality of life.Steady-state visual evoked potential(SSVEP)is the most researched BCI experimental paradigm,which offers the advantages of high signal-to-noise ratio and short training-time requirement by users.In a complete BCI system,the two most critical components are the experimental paradigm and decoding algorithm.However,a systematic combination of the SSVEP experimental paradigm and decoding algorithms is missing in existing studies.In the present study,the transient visual evoked potential,SSVEP,and various improved SSVEP paradigms are compared and analyzed,and the problems and development bottlenecks in the experimental paradigm are finally pointed out.Subsequently,the canonical correlation analysis and various improved decoding algorithms are introduced,and the opportunities and challenges of the SSVEP decoding algorithm are discussed. 展开更多
关键词 steady-state visual evoked potential brain–computer interface canonical correlation analysis decoding algorithm
原文传递
The dorsolateral pre-frontal cortex bi-polar error-related potential in a locked-in patient implanted with a daily use brain–computer interface
2
作者 Zachary Freudenburg Khaterah Kohneshin +6 位作者 Erik Aarnoutse Mariska Vansteensel Mariana Branco Sacha Leinders Max van den Boom Elmar G.M.Pels Nick Ramsey 《Control Theory and Technology》 EI CSCD 2021年第4期444-454,共11页
While brain computer interfaces(BCIs)ofer the potential of allowing those sufering from loss of muscle control to once again fully engage with their environment by bypassing the afected motor system and decoding user ... While brain computer interfaces(BCIs)ofer the potential of allowing those sufering from loss of muscle control to once again fully engage with their environment by bypassing the afected motor system and decoding user intentions directly from brain activity,they are prone to errors.One possible avenue for BCI performance improvement is to detect when the BCI user perceives the BCI to have made an unintended action and thus take corrective actions.Error-related potentials(ErrPs)are neural correlates of error awareness and as such can provide an indication of when a BCI system is not performing according to the user’s intentions.Here,we investigate the brain signals of an implanted BCI user sufering from locked-in syndrome(LIS)due to late-stage ALS that prevents her from being able to speak or move but not from using her BCI at home on a daily basis to communicate,for the presence of error-related signals.We frst establish the presence of an ErrP originating from the dorsolateral pre-frontal cortex(dLPFC)in response to errors made during a discrete feedback task that mimics the click-based spelling software she uses to communicate.Then,we show that this ErrP can also be elicited by cursor movement errors in a continuous BCI cursor control task.This work represents a frst step toward detecting ErrPs during the daily home use of a communications BCI. 展开更多
关键词 Brain computer interface Error-related potentials Motor cortex Dorsolateral pre-frontal conrtex Locked-in syndrome Utrecht neural prosthesis
原文传递
Progress in neurorehabilitation research and the support by the National Natural Science Foundation of China from 2010 to 2022
3
作者 Qian Tao Honglu Chao +1 位作者 Dong Fang Dou Dou 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期226-232,共7页
The National Natural Science Foundation of China is one of the major funding agencies for neuro rehabilitation research in China.This study reviews the frontier directions and achievements in the field of neurorehabil... The National Natural Science Foundation of China is one of the major funding agencies for neuro rehabilitation research in China.This study reviews the frontier directions and achievements in the field of neurorehabilitation in China and wo rldwide.We used data from the Web of Science Core Collection(WoSCC) database to analyze the publications and data provided by the National Natural Science Foundation of China to analyze funding information.In addition,the prospects for neurorehabilitation research in China are discussed.From 2010 to 2022,a total of 74,220 publications in neurorehabilitation were identified,with there being an overall upward tendency.During this period,the National Natural Science Foundation of China has funded 476 research projects with a total funding of 192.38 million RMB to support neuro rehabilitation research in China.With the support of the National Natural Science Foundation of China,China has made some achievements in neurorehabilitation research.Research related to neurorehabilitation is believed to be making steady and significant progress in China. 展开更多
关键词 brain computer interface invasive neuromodulation National Natural Science Foundation of China(NSFC) neuroreha bilitation non-invasive brain stimulation PUBLICATION rehabilitation robotics virtual reality
下载PDF
Rough set based multi-agent system cooperation for industrial supervisory interface system
4
作者 王滔 费敏锐 雷电 《Journal of Shanghai University(English Edition)》 CAS 2006年第6期526-530,共5页
In this paper, rough set theory is introduced into the interface multi-agent system (MAS) for industrial supervisory system. Taking advantages of rough set in data mining, a cooperation model for MAS is built. Rules... In this paper, rough set theory is introduced into the interface multi-agent system (MAS) for industrial supervisory system. Taking advantages of rough set in data mining, a cooperation model for MAS is built. Rules for avoiding cooperation conflict are deduced. An optimization algorithm is used to enhance security and real time attributes of the system. An application based on the proposed algorithm and rules are given. 展开更多
关键词 rough set multi-agent system(MAS) COOPERATION human computer interface industrial control system.
下载PDF
Treatment of Imbalance Dataset for Human Emotion Classification
5
作者 Er. Shrawan Thakur 《World Journal of Neuroscience》 2023年第4期173-191,共19页
Developments in biomedical science, signal processing technologies have led Electroencephalography (EEG) signals to be widely used in the diagnosis of brain disease and in the field of Brain-Computer Interface (BCI). ... Developments in biomedical science, signal processing technologies have led Electroencephalography (EEG) signals to be widely used in the diagnosis of brain disease and in the field of Brain-Computer Interface (BCI). The collected EEG signals are processed using Machine Learning-Random Forest and Naive Bayes- and Deep Learning-Recurrent Neural Network (RNN), Neural Network (NN) and Long Short Term Memory (LSTM)-Algorithms to obtain the recent mood of a person. The Algorithms mentioned above have been imposed on the data set in order to find out what the person is feeling at a particular moment. The following thesis is conducted to find out one of the following moods (happy, surprised, disgust, fear, anger and sadness) of a person at an instant, with an aim to obtain the result with least amount of time delay as the mood differs. It is pretty obvious that the accuracy of the output varies depending upon the algorithm used, time taken to process the data, so that it is easy for us to compare the reliability and dependency of a particular algorithm to another, prior to its practical implementation. The imbalance data sets that were used had an imbalanced class and thus, over fitting occurred. This problem was handled by generating Artificial Data sets with the use of SMOTE Oversampling Technique. 展开更多
关键词 Electroencephalography (EEG) Brain computer interface (BCI) Recurrent Neural Network (RNN) Long Short Term Memory (LSTM) Neural Network (NN) Synthetic Minority Over Sampling Technique (SMOTE)
下载PDF
Intelligent Machine Learning Based EEG Signal Classification Model
6
作者 Mesfer Al Duhayyim Haya Mesfer Alshahrani +3 位作者 Fahd N.Al-Wesabi Mohammed Abdullah Al-Hagery Anwer Mustafa Hilal Abu Sarwar Zaman 《Computers, Materials & Continua》 SCIE EI 2022年第4期1821-1835,共15页
In recent years,Brain-Computer Interface(BCI)system gained much popularity since it aims at establishing the communication between human brain and computer.BCI systems are applied in several research areas such as neu... In recent years,Brain-Computer Interface(BCI)system gained much popularity since it aims at establishing the communication between human brain and computer.BCI systems are applied in several research areas such as neuro-rehabilitation,robots,exoeskeletons,etc.Electroencephalography(EEG)is a technique commonly applied in capturing brain signals.It is incorporated in BCI systems since it has attractive features such as noninvasive nature,high time-resolution output,mobility and cost-effective.EEG classification process is highly essential in decision making process and it incorporates different processes namely,feature extraction,feature selection,and classification.With this motivation,the current research paper presents an Intelligent Optimal Fuzzy Support Vector Machine-based EEC recognition(IOFSVM-EEG)model for BCI system.Independent Component Analysis(ICA)technique is applied onto the proposed IOFSVM-EEG model to remove the artefacts that exist in EEG signal and to retain the meaningful EEG information.Besides,Common Spatial Pattern(CSP)-based feature extraction technique is utilized to derive a helpful set of feature vectors from the preprocessed EEG signals.Moreover,OFSVM method is applied in the classification of EEG signals,in which the parameters involved in FSVM are optimally tuned using Grasshopper Optimization Algorithm(GOA).In order to validate the enhanced EEG recognition outcomes of the proposed IOFSVM-EEG model,an extensive set of experiments was conducted.The outcomes were examined under distinct aspects.The experimental results highlighted the enhanced performance of the presented IOFSVM-EEG model over other state-of-the-art methods. 展开更多
关键词 Brain computer interface EEG recognition human computer interface machine learning parameter tuning FSVM
下载PDF
Performance Analysis of Machine Learning Algorithms for Classifying Hand Motion-Based EEG Brain Signals
7
作者 Ayman Altameem Jaideep Singh Sachdev +3 位作者 Vijander Singh Ramesh Chandra Poonia Sandeep Kumar Abdul Khader Jilani Saudagar 《Computer Systems Science & Engineering》 SCIE EI 2022年第9期1095-1107,共13页
Brain-computer interfaces (BCIs) records brain activity using electroencephalogram (EEG) headsets in the form of EEG signals;these signals can berecorded, processed and classified into different hand movements, which... Brain-computer interfaces (BCIs) records brain activity using electroencephalogram (EEG) headsets in the form of EEG signals;these signals can berecorded, processed and classified into different hand movements, which can beused to control other IoT devices. Classification of hand movements will beone step closer to applying these algorithms in real-life situations using EEGheadsets. This paper uses different feature extraction techniques and sophisticatedmachine learning algorithms to classify hand movements from EEG brain signalsto control prosthetic hands for amputated persons. To achieve good classificationaccuracy, denoising and feature extraction of EEG signals is a significant step. Wesaw a considerable increase in all the machine learning models when the movingaverage filter was applied to the raw EEG data. Feature extraction techniques likea fast fourier transform (FFT) and continuous wave transform (CWT) were usedin this study;three types of features were extracted, i.e., FFT Features, CWTCoefficients and CWT scalogram images. We trained and compared differentmachine learning (ML) models like logistic regression, random forest, k-nearestneighbors (KNN), light gradient boosting machine (GBM) and XG boost onFFT and CWT features and deep learning (DL) models like VGG-16, DenseNet201 and ResNet50 trained on CWT scalogram images. XG Boost with FFTfeatures gave the maximum accuracy of 88%. 展开更多
关键词 Machine learning brain signal hand motion recognition braincomputer interface convolutional neural networks
下载PDF
Online prediction of EEG based on KRLST algorithm
8
作者 连召洋 Duan Lijuan +2 位作者 Chen Juncheng Qiao Yuanhua Miao Jun 《High Technology Letters》 EI CAS 2021年第4期357-364,共8页
Kernel adaptive algorithm is an extension of adaptive algorithm in nonlinear,and widely used in the field of non-stationary signal processing.But the distribution of classic data sets seems relatively regular and simp... Kernel adaptive algorithm is an extension of adaptive algorithm in nonlinear,and widely used in the field of non-stationary signal processing.But the distribution of classic data sets seems relatively regular and simple in time series.The distribution of the electroencephalograph(EEG)signal is more randomness and non-stationarity,so online prediction of EEG signal can further verify the robustness and applicability of kernel adaptive algorithms.What’s more,the purpose of modeling and analyzing the time series of EEG signals is to discover and extract valuable information,and to reveal the internal relations of EEG signals.The time series prediction of EEG plays an important role in EEG time series analysis.In this paper,kernel RLS tracker(KRLST)is presented to online predict the EEG signals of motor imagery and compared with other 13 kernel adaptive algorithms.The experimental results show that KRLST algorithm has the best effect on the brain computer interface(BCI)dataset. 展开更多
关键词 brain computer interface(BCI) kernel adaptive algorithm online prediction of electroencephalograph(EEG)
下载PDF
BIO‐inspired fuzzy inference system—For physiological signal analysis
9
作者 Ravi Suppiah Noori Kim +1 位作者 Khalid Abidi Anurag Sharma 《IET Cyber-Systems and Robotics》 EI 2023年第3期24-36,共13页
When a person's neuromuscular system is affected by an injury or disease,Activities‐for‐Daily‐Living(ADL),such as gripping,turning,and walking,are impaired.Electroen-cephalography(EEG)and Electromyography(EMG)a... When a person's neuromuscular system is affected by an injury or disease,Activities‐for‐Daily‐Living(ADL),such as gripping,turning,and walking,are impaired.Electroen-cephalography(EEG)and Electromyography(EMG)are physiological signals generated by a body during neuromuscular activities embedding the intentions of the subject,and they are used in Brain–Computer Interface(BCI)or robotic rehabilitation systems.However,existing BCI or robotic rehabilitation systems use signal classification technique limitations such as(1)missing temporal correlation of the EEG and EMG signals in the entire window and(2)overlooking the interrelationship between different sensors in the system.Furthermore,typical existing systems are designed to operate based on the presence of dominant physiological signals associated with certain actions;(3)their effectiveness will be greatly reduced if subjects are disabled in generating the dominant signals.A novel classification model,named BIOFIS is proposed,which fuses signals from different sensors to generate inter‐channel and intra‐channel relationships.It ex-plores the temporal correlation of the signals within a timeframe via a Long Short‐Term Memory(LSTM)block.The proposed architecture is able to classify the various subsets of a full‐range arm movement that performs actions such as forward,grip and raise,lower and release,and reverse.The system can achieve 98.6%accuracy for a 4‐way action using EEG data and 97.18%accuracy using EMG data.Moreover,even without the dominant signal,the accuracy scores were 90.1%for the EEG data and 85.2%for the EMG data.The proposed mechanism shows promise in the design of EEG/EMG‐based use in the medical device and rehabilitation industries. 展开更多
关键词 artificial intelligence bio‐inspired robotics brain‐computer interface deep learning embedded system FUZZY
原文传递
Multiband decomposition and spectral discriminative analysis for motor imagery BCI via deep neural network 被引量:1
10
作者 Pengpai WANG Mingliang WANG +2 位作者 Yueying ZHOU Ziming XU Daoqiang ZHANG 《Frontiers of Computer Science》 SCIE EI CSCD 2022年第5期71-83,共13页
Human limb movement imagery,which can be used in limb neural disorders rehabilitation and brain-controlled external devices,has become a significant control paradigm in the domain of brain-computer interface(BCI).Alth... Human limb movement imagery,which can be used in limb neural disorders rehabilitation and brain-controlled external devices,has become a significant control paradigm in the domain of brain-computer interface(BCI).Although numerous pioneering studies have been devoted to motor imagery classification based on electroencephalography(EEG)signal,their performance is somewhat limited due to insufficient analysis of key effective frequency bands of EEG signals.In this paper,we propose a model of multiband decomposition and spectral discriminative analysis for motor imagery classification,which is called variational sample-long short term memory(VS-LSTM)network.Specifically,we first use a channel fusion operator to reduce the signal channels of the raw EEG signal.Then,we use the variational mode decomposition(VMD)model to decompose the EEG signal into six band-limited intrinsic mode functions(BIMFs)for further signal noise reduction.In order to select discriminative frequency bands,we calculate the sample entropy(SampEn)value of each frequency band and select the maximum value.Finally,to predict the classification of motor imagery,a LSTM model is used to predict the class of frequency band with the largest SampEn value.An open-access public data is used to evaluated the effectiveness of the proposed model.In the data,15 subjects performed motor imagery tasks with elbow flexion/extension,forearm supination/pronation and hand open/close of right upper limb.The experiment results show that the average classification result of seven kinds of motor imagery was 76.2%,the average accuracy of motor imagery binary classification is 96.6%(imagery vs.rest),respectively,which outperforms the state-of-the-art deep learning-based models.This framework significantly improves the accuracy of motor imagery by selecting effective frequency bands.This research is very meaningful for BCIs,and it is inspiring for end-to-end learning research. 展开更多
关键词 brain computer interface EEG long short-term memory VMD sample entropy motor imagery
原文传递
EEG-based Emotion Recognition Using Multiple Kernel Learning
11
作者 Qian Cai Guo-Chong Cui Hai-Xian Wang 《Machine Intelligence Research》 EI CSCD 2022年第5期472-484,共13页
Emotion recognition based on electroencephalography(EEG)has a wide range of applications and has great potential value,so it has received increasing attention from academia and industry in recent years.Meanwhile,multi... Emotion recognition based on electroencephalography(EEG)has a wide range of applications and has great potential value,so it has received increasing attention from academia and industry in recent years.Meanwhile,multiple kernel learning(MKL)has also been favored by researchers for its data-driven convenience and high accuracy.However,there is little research on MKL in EEG-based emotion recognition.Therefore,this paper is dedicated to exploring the application of MKL methods in the field of EEG emotion recognition and promoting the application of MKL methods in EEG emotion recognition.Thus,we proposed a support vector machine(SVM)classifier based on the MKL algorithm EasyMKL to investigate the feasibility of MKL algorithms in EEG-based emotion recognition problems.We designed two data partition methods,random division to verify the validity of the MKL method and sequential division to simulate practical applications.Then,tri-categorization experiments were performed for neutral,negative and positive emotions based on a commonly used dataset,the Shanghai Jiao Tong University emotional EEG dataset(SEED).The average classification accuracies for random division and sequential division were 92.25%and 74.37%,respectively,which shows better classification performance than the traditional single kernel SVM.The final results show that the MKL method is obviously effective,and the application of MKL in EEG emotion recognition is worthy of further study.Through the analysis of the experimental results,we discovered that the simple mathematical operations of the features on the symmetrical electrodes could not effectively integrate the spatial information of the EEG signals to obtain better performance.It is also confirmed that higher frequency band information is more correlated with emotional state and contributes more to emotion recognition.In summary,this paper explores research on MKL methods in the field of EEG emotion recognition and provides a new way of thinking for EEG-based emotion recognition research. 展开更多
关键词 Emotion recognition electroencephalography(EEG) multiple kernel learning machine learning brain computer interface
原文传递
A new 2-class unilateral upper limb motor imagery tasks for stroke rehabilitation training
12
作者 Banghua Yang Jun Ma +2 位作者 Wenzheng Qiu Yan Zhu Xia Meng 《Medicine in Novel Technology and Devices》 2022年第1期65-70,共6页
The rehabilitation training based on motor imagery brain-computer interface(MI-BCI)is considered to be an effective method.We designed a new 2-class unilateral upper limb motor imagery tasks.Data from 15 healthy subje... The rehabilitation training based on motor imagery brain-computer interface(MI-BCI)is considered to be an effective method.We designed a new 2-class unilateral upper limb motor imagery tasks.Data from 15 healthy subjects and 10 stoke patients are collected in the study.The results of event-related desynchronization/synchronization(ERD/ERS)and power spectral density(PSD)analysis showed the significant different features on health subjects and stroke patients.The improved 2-Conv-FBCNET is used to classify Electroencephalogram(EEG)signals and the accuracy is(health:61.0%,stroke:59.4%).The new two types of tasks provide a new training method for MI-BCI rehabilitation training system. 展开更多
关键词 Stroke rehabilitation training Unilateral upper limb Motor imagery-brain computer interface(MIBCI)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部