The purpose of this exploratory research was to study the relationship between the mood of computer users and their use of keyboard and mouse to examine the possibility of creating a generic or individualized mood mea...The purpose of this exploratory research was to study the relationship between the mood of computer users and their use of keyboard and mouse to examine the possibility of creating a generic or individualized mood measure. To examine this, a field study (n = 26) and a controlled study (n = 16) were conducted. In the field study, interaction data and self-reported mood measurements were collected during normal PC use over several days. In the controlled study, participants worked on a programming task while listening to high or low arousing background music. Besides subjective mood measurement, galvanic skin response (GSR) data was also collected. Results found no generic relationship between the interaction data and the mood data. However, the re- suits of the studies found significant average correlations be- tween mood measurement and personalized regression models based on keyboard and mouse interaction data. Together the results suggest that individualized mood prediction is pos- sible from interaction behaviour with keyboard and mouse.展开更多
The study investigated user experience, display complexity, display type (tables versus graphs), and task difficulty as variables affecting the user’s ability to navigate through complex visual data. A total of 64 pa...The study investigated user experience, display complexity, display type (tables versus graphs), and task difficulty as variables affecting the user’s ability to navigate through complex visual data. A total of 64 participants, 39 undergraduate students (novice users) and 25 graduate students (intermediate-level users) participated in the study. The experimental design was 2 × 2 × 2 × 3 mixed design using two between-subject variables (display complexity, user experience) and two within-subject variables (display format, question difficulty). The results indicated that response time was superior for graphs (relative to tables), especially when the questions were difficult. The intermediate users seemed to adopt more extensive search strategies than novices, as revealed by an analysis of the number of changes they made to the display prior to answering questions. It was concluded that designers of data displays should consider the (a) type of display, (b) difficulty of the task, and (c) expertise level of the user to obtain optimal levels of performance.展开更多
文摘The purpose of this exploratory research was to study the relationship between the mood of computer users and their use of keyboard and mouse to examine the possibility of creating a generic or individualized mood measure. To examine this, a field study (n = 26) and a controlled study (n = 16) were conducted. In the field study, interaction data and self-reported mood measurements were collected during normal PC use over several days. In the controlled study, participants worked on a programming task while listening to high or low arousing background music. Besides subjective mood measurement, galvanic skin response (GSR) data was also collected. Results found no generic relationship between the interaction data and the mood data. However, the re- suits of the studies found significant average correlations be- tween mood measurement and personalized regression models based on keyboard and mouse interaction data. Together the results suggest that individualized mood prediction is pos- sible from interaction behaviour with keyboard and mouse.
文摘The study investigated user experience, display complexity, display type (tables versus graphs), and task difficulty as variables affecting the user’s ability to navigate through complex visual data. A total of 64 participants, 39 undergraduate students (novice users) and 25 graduate students (intermediate-level users) participated in the study. The experimental design was 2 × 2 × 2 × 3 mixed design using two between-subject variables (display complexity, user experience) and two within-subject variables (display format, question difficulty). The results indicated that response time was superior for graphs (relative to tables), especially when the questions were difficult. The intermediate users seemed to adopt more extensive search strategies than novices, as revealed by an analysis of the number of changes they made to the display prior to answering questions. It was concluded that designers of data displays should consider the (a) type of display, (b) difficulty of the task, and (c) expertise level of the user to obtain optimal levels of performance.