Holographic display stands as a prominent approach for achieving lifelike three-dimensional(3D)reproductions with continuous depth sensation.However,the generation of a computer-generated hologram(CGH)always relies on...Holographic display stands as a prominent approach for achieving lifelike three-dimensional(3D)reproductions with continuous depth sensation.However,the generation of a computer-generated hologram(CGH)always relies on the repetitive computation of diffraction propagation from point-cloud or multiple depthsliced planar images,which inevitably leads to an increase in computational complexity,making real-time CGH generation impractical.Here,we report a new CGH generation algorithm capable of rapidly synthesizing a 3D hologram in only one-step backward propagation calculation in a novel split Lohmann lens-based diffraction model.By introducing an extra predesigned virtual digital phase modulation of multifocal split Lohmann lens in such a diffraction model,the generated CGH appears to reconstruct 3D scenes with accurate accommodation abilities across the display contents.Compared with the conventional layer-based method,the computation speed of the proposed method is independent of the quantized layer numbers,and therefore can achieve real-time computation speed with a very dense of depth sampling.Both simulation and experimental results validate the proposed method.展开更多
We proposed a method for calculating the computer generated hologram from multi-plane 3D objects by using nonuniform sampled angular spectrum method (NUASM). Both of the holo-gram plane and the image plane are nonun...We proposed a method for calculating the computer generated hologram from multi-plane 3D objects by using nonuniform sampled angular spectrum method (NUASM). Both of the holo-gram plane and the image plane are nonuniform sampled according to the distances and positions of the three-dimensional objects. The nonuniform fast Fourier transform (NUFFT) is used to calculate the angular spectrum propagation from the image plane to the hologram plane and the hologram can be calculated in only one step. Simulation and optical experiment results show that the hologram generated in this way can reconstruct objects on multi- planes simultaneously and separately without axial distortion.展开更多
The bidirectional error diffusion(BERD) algorithm is free from random phase modulation that introduces speckle noise on the reconstructed images, compared with other computer-generated phase-only hologram(POH) approac...The bidirectional error diffusion(BERD) algorithm is free from random phase modulation that introduces speckle noise on the reconstructed images, compared with other computer-generated phase-only hologram(POH) approaches. During the POH generation process, the amplitudes of all pixels are traditionally set to one for diffusing the errors to their neighborhood of unprocessed pixels. In this paper, we reveal that the reconstruction quality depends on the uniform amplitude value for different object pattern. The pattern-adaptive BERD(PA-BERD) algorithm is proposed for high-quality holographic reconstruction. The optimized amplitude value can be acquired for each object pattern and each propagation distance.The PA-BERD-based POHs have shown higher reconstruction quality than traditional BERD-based POHs in simulations as well as optical experiments.展开更多
基金supported by the National Special Fund for the Development of Major Research Equipment and Instrument(Grant No.2020YFF01014503)the ShanghaiMunicipal Science and Technology Major Project(Grant No.22ZR1473100)+1 种基金the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2022232)and the National Key Research and Development Program of China(Grant No.2022YFB2804602).
文摘Holographic display stands as a prominent approach for achieving lifelike three-dimensional(3D)reproductions with continuous depth sensation.However,the generation of a computer-generated hologram(CGH)always relies on the repetitive computation of diffraction propagation from point-cloud or multiple depthsliced planar images,which inevitably leads to an increase in computational complexity,making real-time CGH generation impractical.Here,we report a new CGH generation algorithm capable of rapidly synthesizing a 3D hologram in only one-step backward propagation calculation in a novel split Lohmann lens-based diffraction model.By introducing an extra predesigned virtual digital phase modulation of multifocal split Lohmann lens in such a diffraction model,the generated CGH appears to reconstruct 3D scenes with accurate accommodation abilities across the display contents.Compared with the conventional layer-based method,the computation speed of the proposed method is independent of the quantized layer numbers,and therefore can achieve real-time computation speed with a very dense of depth sampling.Both simulation and experimental results validate the proposed method.
文摘We proposed a method for calculating the computer generated hologram from multi-plane 3D objects by using nonuniform sampled angular spectrum method (NUASM). Both of the holo-gram plane and the image plane are nonuniform sampled according to the distances and positions of the three-dimensional objects. The nonuniform fast Fourier transform (NUFFT) is used to calculate the angular spectrum propagation from the image plane to the hologram plane and the hologram can be calculated in only one step. Simulation and optical experiment results show that the hologram generated in this way can reconstruct objects on multi- planes simultaneously and separately without axial distortion.
基金the National Natural Science Foundation of China(NSFC)(Nos.61827825 and 61775117)the Tsinghua University Initiative Scientific Research Program(No.20193080075)。
文摘The bidirectional error diffusion(BERD) algorithm is free from random phase modulation that introduces speckle noise on the reconstructed images, compared with other computer-generated phase-only hologram(POH) approaches. During the POH generation process, the amplitudes of all pixels are traditionally set to one for diffusing the errors to their neighborhood of unprocessed pixels. In this paper, we reveal that the reconstruction quality depends on the uniform amplitude value for different object pattern. The pattern-adaptive BERD(PA-BERD) algorithm is proposed for high-quality holographic reconstruction. The optimized amplitude value can be acquired for each object pattern and each propagation distance.The PA-BERD-based POHs have shown higher reconstruction quality than traditional BERD-based POHs in simulations as well as optical experiments.