The miscibility and structure of A-B copolymer/C homopolymer blends with special interactions were studied by aMonte Carlo simulation in two dimensions. The interaction between segment A and segment C was repulsive, w...The miscibility and structure of A-B copolymer/C homopolymer blends with special interactions were studied by aMonte Carlo simulation in two dimensions. The interaction between segment A and segment C was repulsive, whereas it wasattractive between segment B and segment C. In order to study the effect of copolymer chain structure on the morphologyand structure of A-B copolymer/C homopolymer blends, the alternating, random and block A-B copolymers were introducedinto the blends, respectively. The simulation results indicated that the miscibility of A-B block copolymer/C homopolymerblends depended on the chain structure of the A-B copolymer. Compared with alternating or random copolymer, the blockcopolymer, especially the diblock copolymer, could lead to a poor miscibility of A-B copolymer/C homopolymer blends.Moreover, for diblock A-B copolymer/C homopolymer blends, obvious self-organized core-shell smicture was observed inthe segment B composition region from 20% to 60%. However if diblock copolymer composition in the blends is less than40%, obvious self-organized core-shell structure could be formed in the B-segment component region from 10 to 90%.Furthermore, computer statistical analysis for the simulation results showed that the core sizes tended to increasecontinuously and their distribution became wider with decreasing B-segment component.展开更多
The phase transition of tungsten(W)under high pressures was investigated with molecular dynamics simulation.The structure was characterized in terms of the pair distribution function and the largest standard cluster a...The phase transition of tungsten(W)under high pressures was investigated with molecular dynamics simulation.The structure was characterized in terms of the pair distribution function and the largest standard cluster analysis(LSCA).It is found that under 40−100 GPa at a cooling rate of 0.1 K/ps a pure W melt first crystallizes into the body-centred cubic(BCC)crystal,and then transfers into the hexagonal close-packed(HCP)crystal through a series of BCC−HCP coexisting states.The dynamic factors may induce intermediate stages during the liquid−solid transition and the criss-cross grain boundaries cause lots of indistinguishable intermediate states,making the first-order BCC−HCP transition appear to be continuous.Furthermore,LSCA is shown to be a parameter-free method that can effectively analyze both ordered and disordered structures.Therefore,LSCA can detect more details about the evolution of the structure in such structure transition processes with rich intermediate structures.展开更多
By molecular dynamics simulations employing an embedded atom model potential, we investigate the fcc-to-bcc phase transition in single crystal Al, caused by uniform compression. Results show that the fcc structure is ...By molecular dynamics simulations employing an embedded atom model potential, we investigate the fcc-to-bcc phase transition in single crystal Al, caused by uniform compression. Results show that the fcc structure is unstable when the pressure is over 250 GPa, in reasonable agreement with the calculated value through the density flmctional theory. The morphology evolution of the structural transition and the corresponding transition mechanism are analysed in detail. The bcc (011) planes are transited from the fcc (111) plane and the (111) plane. We suggest that the transition mechanism consists mainly of compression, shear, slid and rotation of the lattice. In addition, our radial distribution flmction analysis explicitly indicates the phase transition of Al from fee phase to bce structure.展开更多
Molecule dynamics simulation was used on HPT(2,3,6,7,10,11-hexa-n-pentyloxytriphenylene), which is a discotic Liquid crystal. From analyzing the energy and displacement varying with the temperature, the phase transiti...Molecule dynamics simulation was used on HPT(2,3,6,7,10,11-hexa-n-pentyloxytriphenylene), which is a discotic Liquid crystal. From analyzing the energy and displacement varying with the temperature, the phase transition temperature of PM6MPP can be predicted. The deviations of T-g, T-m and T-i due to the MD time scale are small enough that it should be possibly used to predict the material properties especially when more powerful computers are available.展开更多
The present review aims to highlight the applications of thermoresponsive polymers.Thermo-responsive polymers show a sharp change in properties upon a small or modest change in temperature.This behaviour can be utiliz...The present review aims to highlight the applications of thermoresponsive polymers.Thermo-responsive polymers show a sharp change in properties upon a small or modest change in temperature.This behaviour can be utilized for the preparation of so-called‘smart’drug delivery systems,which mimic biological response behaviour to a certain extent.Such materials are used in the development of several applications,such as drug delivery systems,tissue engineering scaffolds and gene delivery.Advances in this field are particularly relevant to applications in the areas of regenerative medicine and drug delivery.This review addresses summary of the main applications of thermoresponsive polymers which are categorized based on their 3-dimensional structure;hydrogels,interpenetrating networks,micelles,films and particles.The physico-chemical behaviour underlying the phase transition is also discussed in brief.展开更多
The crystalline phase transition of aliphatic nylon 10/10 has been investigated on the basis of the simultaneous measurement of wide-angle and small-angle X-ray scatterings, the infrared spectral measurement and the m...The crystalline phase transition of aliphatic nylon 10/10 has been investigated on the basis of the simultaneous measurement of wide-angle and small-angle X-ray scatterings, the infrared spectral measurement and the molecular dynamics calculation. An interpretation of infrared spectra taken for a series of nylon samples and the corresponding model compounds was successfully made, allowing us to assign the infrared bands of the planar-zigzag methylene segments reasonably. As a result the methylene segmental parts of molecular chains were found to experience an order-to-disorder transition in the Brill transition region, where the intermolecular hydrogen bonds are kept alive although the bond strength becomes weaker at higher temperature. The small-angle X-ray scattering data revealed a slight change in lamellar stacking mode in the transition region. The crystal structure has been found to change more remarkably in the temperature region immediately below the melting point, where the conformationally disordered chains experienced drastic rotational and translational motions without any constraints by hydrogen bonds, and the lamellar thickness increased largely along the chain axis. These experimental results were reasonably reproduced by the molecular dynamics calculation performed at the various temperatures.展开更多
In this paper we would like to give a brief review about the extensibility of the liquid-liquid locus into the negativepressure region. Negative pressure states are hardly explored; most researchers believe that the p...In this paper we would like to give a brief review about the extensibility of the liquid-liquid locus into the negativepressure region. Negative pressure states are hardly explored; most researchers believe that the pressure scale ends at p = 0.We would like to show that this is not true, the p = 0 point is not a special point for liquids, it can be 'easily' crossed. We aregoing to give a few example, where the extension of liquid-liquid locus for polymer blends and solutions below p = 0 givesus some interesting results, like the merging of UCST and LCST branches in weakly interacting polymer solutions or thereason why most UCST blends exhibit pressure induced immiscibility. Also, we will see what happens with the immiscibilityisland of aqueous polymer solutions when -- reaching the critical molar mass -- it 'disappears'.展开更多
The ferrimagnetism and quantum phase transition of a bipartite lozenge periodic Anderson-like organic polymer, in which the localized f electrons hybridize with the odd site conduction orbitals, are investigated by me...The ferrimagnetism and quantum phase transition of a bipartite lozenge periodic Anderson-like organic polymer, in which the localized f electrons hybridize with the odd site conduction orbitals, are investigated by means of Green's function theory. The ground state turns out to be gapless ferrimagnetism. At a finite temperature, the ferrimagnetic-to- paramagnetic phase transition takes place. The Kondo screenings and Ruderman-Kittel-Kasuya-Yosida (RKKY) inter- action can reduce and increase the transition temperature, respectively. Two Kondo screenings compete with each other, giving rise to the localized f electron spin screened antiferromagnetically. Accordingly, in a magnetic field, all spins are aligned along the chain easily, which is associated with metal-insulator transition. Furthermore, in a temperature-field plane, we reveal the gapless and spin polarized phases, which are characterized by susceptibility and specific heat, and whose behaviours are determined by the competition between the up-spin and down-spin hole excitations.展开更多
The present paper covers the phase behavior of poly(pbenzamide)(PBA)/Nylon 6/H 2SO 4 and poly(pphenylene terephthalamide) (PPTA)/Nylon 6/H 2SO 4 systems. The transition temperatures detected by the Depolarized L...The present paper covers the phase behavior of poly(pbenzamide)(PBA)/Nylon 6/H 2SO 4 and poly(pphenylene terephthalamide) (PPTA)/Nylon 6/H 2SO 4 systems. The transition temperatures detected by the Depolarized Light Intensity measurements were used to construct the phase diagram in which the influence of temperature was shown. The enhanced depolarized light intensity observed in the ternary system suggests that the coil polymer chains may tend to be extended and contribute to the overall anisotropy of the liquid crystal phase.展开更多
The thawing time of ice and freezed Salomon fish during high pressure assisted thawing process was evaluated by computer simulation using a finite element and the results were compared with those under atmospheric pre...The thawing time of ice and freezed Salomon fish during high pressure assisted thawing process was evaluated by computer simulation using a finite element and the results were compared with those under atmospheric pressure. The apparent specific heat method was adopted to treat the release of latent heat. The effects of different factors on the high pressure assisted thawing process were analyzed. The time reductions of different sample dimensions were estimated and the temperature contour of thawing at different conditions was obtained. The results showed that the temperature gap of phase transition was the main factor, which could shorten the thawing time. Moreover, a second order relationship was obtained between pressure and phase transition time.展开更多
The epoxy shape memory polymer(SMP)with adjustable phase transition temperature is a kind of high-performance shape mem-ory polymer,which can change its phase transition temperature and improve its mechanical properti...The epoxy shape memory polymer(SMP)with adjustable phase transition temperature is a kind of high-performance shape mem-ory polymer,which can change its phase transition temperature and improve its mechanical properties through the process of photo curing.An epoxy SMP constitutive model combining phase transition and viscoelasticity is established by discretizing the epoxy SMP into several glass phase units and rubbery phase units in this paper.The model includes the viscoelastic constitutive equa-tions of glass phase units and rubber phase units,the parameter expression during shape memory process,and material parameter equation during photocuring process.And the stress relaxation behavior of epoxy SMP at different temperatures and the change of material parameters during the photo-curing process are simu-lated numerically,and the simulation results perform consistency with the experimental data.The model can not only relate shape memory effect and phase transformation in physics but also better characterize the viscoelastic properties of SMP and predict the shape memory response of SMP.展开更多
Thick film of Polystyrene (PS)/CdS semiconducting optical nanocomposite has been synthesized by dispersing nanofiller particles of CdS in PS matrix. The nanostructure of the CdS particles has been ascertained through ...Thick film of Polystyrene (PS)/CdS semiconducting optical nanocomposite has been synthesized by dispersing nanofiller particles of CdS in PS matrix. The nanostructure of the CdS particles has been ascertained through X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Small angle x-ray scattering analysis has been performed in order to ascertain nanocomposite character of the PS/CdS sample. Scanning Electron Microscopy (SEM) analyses of these samples have been carried out to establish the surface morphology. Optical Absorption Spectroscopy is used to measure the energy band gap of PS/CdS nanocomposite by using Tauc relation whereas Transient Plane Source Technique is used for the determination of thermal conductivity of the prepared samples. The phase transition temperature and elastic response of the prepared samples have been ascertained through Dynamic Mechanical Analyzer (DMA). This study reveals that the thermal conductivity, Young’s modulus and the toughness of the material are greatly influenced by the existence of interfacial energetic interaction between dispersed CdS nanofiller particles and matrix of PS.展开更多
With a view of detecting the effects of macromolecular crowding on the phase transition of DNA compaction confined in spherical space,Monte Carlo simulations of DNA compaction in free space,in confined spherical space...With a view of detecting the effects of macromolecular crowding on the phase transition of DNA compaction confined in spherical space,Monte Carlo simulations of DNA compaction in free space,in confined spherical space without crowders and in confined spherical space with crowders were performed separately.The simulation results indicate that macromolecular crowding effects on DNA compaction are dominant over the roles of multivalent counterions.In addition,effects of temperature on the phase transition of DNA compaction have been identified in confined spherical space with different radii.In confined spherical space without crowders,the temperature corresponding to phase transition depends on the radius of the confined spherical space linearly.In contrast,with the addition of crowders to the confined spherical space,effects of temperature on the phase transition of DNA compaction become insignificant,whereas the phase transition at different temperatures strongly depends on the size of crowder,and the critical volume fraction of crowders pertains to the diameter of crowder linearly.展开更多
We observed the linear-to-zigzag structural phase transition of a ^40Ca^+ crystal in a homemade linear Paul trap. The values of the total temperature of the ion crystals during the phase transition are derived using ...We observed the linear-to-zigzag structural phase transition of a ^40Ca^+ crystal in a homemade linear Paul trap. The values of the total temperature of the ion crystals during the phase transition are derived using the molecular-dynamics(MD) simulation method. A series of simulations revealed that the ratio of the radial to axial secular frequencies has a dependence on the total temperature that obeys different functional forms for linear and zigzag structures, and the transition point occurs where these functions intersect; thus, the critical value of the ratio of secular frequencies that drives the structure phase transition can be derived.展开更多
Recent experiments [Guo et al., Phys. Rev. Lett. 124 206602(2020)] on thermodynamic properties of the frustrated layered quantum magnet SrCu_(2)(BO_(3))_(2)-the Shastry–Sutherland material-have provided strong eviden...Recent experiments [Guo et al., Phys. Rev. Lett. 124 206602(2020)] on thermodynamic properties of the frustrated layered quantum magnet SrCu_(2)(BO_(3))_(2)-the Shastry–Sutherland material-have provided strong evidence for a lowtemperature phase transition between plaquette-singlet and antiferromagnetic order as a function of pressure. Further motivated by the recently discovered unusual first-order quantum phase transition with an apparent emergent O(4) symmetry of the antiferromagnetic and plaquette-singlet order parameters in a two-dimensional "checkerboard J-Q" quantum spin model[Zhao et al., Nat. Phys. 15 678(2019)], we here study the same model in the presence of weak inter-layer couplings. Our focus is on the evolution of the emergent symmetry as the system crosses over from two to three dimensions and the phase transition extends from strictly zero temperature in two dimensions up to finite temperature as expected in SrCu_(2)(BO_(3))_(2).Using quantum Monte Carlo simulations, we map out the phase boundaries of the plaquette-singlet and antiferromagnetic phases, with particular focus on the triple point where these two ordered phases meet the paramagnetic phase for given strength of the inter-layer coupling. All transitions are first-order in the neighborhood of the triple point. We show that the emergent O(4) symmetry of the coexistence state breaks down clearly when the interlayer coupling becomes sufficiently large, but for a weak coupling, of the magnitude expected experimentally, the enlarged symmetry can still be observed at the triple point up to significant length scales. Thus, it is likely that the plaquette-singlet to antiferromagnetic transition in SrCu_(2)(BO_(3))_(2) exhibits remnants of emergent O(4) symmetry, which should be observable due to additional weakly gapped Goldstone modes.展开更多
We investigate the granular flow states in a channel with bottleneck by molecular dynamics simulations.Our study is restricted only on a selected key area rather than on the whole system to focus on the flow propertie...We investigate the granular flow states in a channel with bottleneck by molecular dynamics simulations.Our study is restricted only on a selected key area rather than on the whole system to focus on the flow properties of a single granular state.A random force field is introduced to control the granular temperature.It is also pointed out that the flow rate in the granular flow can be correlated with the pressure,which leads us to carry out a comprehensive study similar to the classical study for general liquid-gas phase transition.Our results show that the dilute flow state and the dense flow state of the granules are similar to the gas state and the liquid state of general substances,respectively,and the properties of phase transition and critical phenomenon are also similar to those occurring in general substances.展开更多
The purpose of this work is to identify the universality class of the nonequilibrium phase transition in the two-dimensional kinetic Ising ferromagnet driven by propagating magnetic field wave. To address this issue, ...The purpose of this work is to identify the universality class of the nonequilibrium phase transition in the two-dimensional kinetic Ising ferromagnet driven by propagating magnetic field wave. To address this issue, the finite size analysis of the nonequilibrium phase transition, in two-dimensional Ising ferromagnet driven by plane propagating magnetic wave, is studied by Monte Carlo simulation. It is observed that the system undergoes a nonequilibrium dynamic phase transition from a high temperature dynamically symmetric (propagating) phase to a low temperature dynamically symmetry-broken (pinned) phase as the system is cooled below the transition temperature. This transition temperature is determined precisely by studying the fourth-order Binder Cumulant of the dynamic order parameter as a function of temperature for different system sizes (L). From the finite size analysis of dynamic order parameter ?and the dynamic susceptibility , we have estimated the critical exponents and ?(measured from the data read at the critical temperature obtained from Binder cumulant), and (measured from the peak positions of dynamic susceptibility). Our results indicate that such driven Ising ferromagnet belongs to the same universality class of the two-dimensional equilibrium Ising ferromagnet (where and ), within the limits of statistical errors.展开更多
Five kinds of side chain liquid crystalline polymers with a chiral component in the pendant group were synthesized and characterized by GPC, polarizing microscopy, DSC, X-ray diffraction ano Dielectric Relaxation Spec...Five kinds of side chain liquid crystalline polymers with a chiral component in the pendant group were synthesized and characterized by GPC, polarizing microscopy, DSC, X-ray diffraction ano Dielectric Relaxation Spectroscopy. The liquid crystalline behaviour of the polymers is affected by the length of flexible spacer, which links the mesogenic side chain to the polymer backbone and mesogenic moiety. The characteristic of smectic phase is observed for all the polymers.展开更多
The equilibrium distribution of a polymer chain between two interconnected spherical cavities (a small one with radius Rs and a large one with radius Rl) is studied by using Monte Carlo simulation. A conformational tr...The equilibrium distribution of a polymer chain between two interconnected spherical cavities (a small one with radius Rs and a large one with radius Rl) is studied by using Monte Carlo simulation. A conformational transition from a double-cavity-occupation (DCO) state to a single-cavity-occupation (SCO) state is observed. The dependence of the critical radius of the small cavity (RsC) where the transition occurs on Rl and the polymer length N can be described by RsC∝N1/3R1^1-1/3v with ν being the Flory exponent, and meanwhile the equilibrium number (ms) of monomers in the small cavity for the DCO phase can be expressed as ms = N/((Rl/Rs)3 + 1), which can be quantitatively understood by using the blob picture. Moreover, in the SCO phase, the polymer is found to prefer staying in the large cavity.展开更多
Based on the principles of thermodynamics, we elucidate the fundamental reasons behind the hysteresis of spontaneous polarization in ferroelectric materials during heating and cooling processes. By utilizing the effec...Based on the principles of thermodynamics, we elucidate the fundamental reasons behind the hysteresis of spontaneous polarization in ferroelectric materials during heating and cooling processes. By utilizing the effective Hamiltonian method in conjuction with the phase-field model, we have successfully reproduced the thermal hysteresis observed in ferroelectric materials during phase transitions. The computational results regarding the electrocaloric effect from these two different computational scales closely align with experimental measurements. Furthermore, we analyze how the first-order ferroelectric phase transition gradually diminishes with an increasing applied electric field, exhibiting characteristics of second-order-like phase transition. By employing the characteristic parameters of thermal hysteresis, we have established a pathway for calculations across different computational scales, thereby providing theoretical support for further investigations into the properties of ferroelectric materials through concurrent multiscale simulations.展开更多
基金This work was supported by the National Natural Science Foundation of China (20023003, 50027001, 29704008, 20074037, 50073023 and 50290090) and subsidized by the Special Funds for Major Basic Research projects (G1999064800) and the Special Pre-Funds for
文摘The miscibility and structure of A-B copolymer/C homopolymer blends with special interactions were studied by aMonte Carlo simulation in two dimensions. The interaction between segment A and segment C was repulsive, whereas it wasattractive between segment B and segment C. In order to study the effect of copolymer chain structure on the morphologyand structure of A-B copolymer/C homopolymer blends, the alternating, random and block A-B copolymers were introducedinto the blends, respectively. The simulation results indicated that the miscibility of A-B block copolymer/C homopolymerblends depended on the chain structure of the A-B copolymer. Compared with alternating or random copolymer, the blockcopolymer, especially the diblock copolymer, could lead to a poor miscibility of A-B copolymer/C homopolymer blends.Moreover, for diblock A-B copolymer/C homopolymer blends, obvious self-organized core-shell smicture was observed inthe segment B composition region from 20% to 60%. However if diblock copolymer composition in the blends is less than40%, obvious self-organized core-shell structure could be formed in the B-segment component region from 10 to 90%.Furthermore, computer statistical analysis for the simulation results showed that the core sizes tended to increasecontinuously and their distribution became wider with decreasing B-segment component.
基金Projects(51661005,U1612442)supported by the National Natural Science Foundation of ChinaProject(QKHJC[2017]1025)supported by the Natural Science Foundation of Guizhou Province,ChinaProject(2018JJ3560)supported by the Natural Science Foundation of Hunan Province,China。
文摘The phase transition of tungsten(W)under high pressures was investigated with molecular dynamics simulation.The structure was characterized in terms of the pair distribution function and the largest standard cluster analysis(LSCA).It is found that under 40−100 GPa at a cooling rate of 0.1 K/ps a pure W melt first crystallizes into the body-centred cubic(BCC)crystal,and then transfers into the hexagonal close-packed(HCP)crystal through a series of BCC−HCP coexisting states.The dynamic factors may induce intermediate stages during the liquid−solid transition and the criss-cross grain boundaries cause lots of indistinguishable intermediate states,making the first-order BCC−HCP transition appear to be continuous.Furthermore,LSCA is shown to be a parameter-free method that can effectively analyze both ordered and disordered structures.Therefore,LSCA can detect more details about the evolution of the structure in such structure transition processes with rich intermediate structures.
基金supported by the Foundations for Development of Science and Technology of China Academy of Engineering Physics(Grant Nos.2009A0101007 and 2009A0101004)
文摘By molecular dynamics simulations employing an embedded atom model potential, we investigate the fcc-to-bcc phase transition in single crystal Al, caused by uniform compression. Results show that the fcc structure is unstable when the pressure is over 250 GPa, in reasonable agreement with the calculated value through the density flmctional theory. The morphology evolution of the structural transition and the corresponding transition mechanism are analysed in detail. The bcc (011) planes are transited from the fcc (111) plane and the (111) plane. We suggest that the transition mechanism consists mainly of compression, shear, slid and rotation of the lattice. In addition, our radial distribution flmction analysis explicitly indicates the phase transition of Al from fee phase to bce structure.
文摘Molecule dynamics simulation was used on HPT(2,3,6,7,10,11-hexa-n-pentyloxytriphenylene), which is a discotic Liquid crystal. From analyzing the energy and displacement varying with the temperature, the phase transition temperature of PM6MPP can be predicted. The deviations of T-g, T-m and T-i due to the MD time scale are small enough that it should be possibly used to predict the material properties especially when more powerful computers are available.
文摘The present review aims to highlight the applications of thermoresponsive polymers.Thermo-responsive polymers show a sharp change in properties upon a small or modest change in temperature.This behaviour can be utilized for the preparation of so-called‘smart’drug delivery systems,which mimic biological response behaviour to a certain extent.Such materials are used in the development of several applications,such as drug delivery systems,tissue engineering scaffolds and gene delivery.Advances in this field are particularly relevant to applications in the areas of regenerative medicine and drug delivery.This review addresses summary of the main applications of thermoresponsive polymers which are categorized based on their 3-dimensional structure;hydrogels,interpenetrating networks,micelles,films and particles.The physico-chemical behaviour underlying the phase transition is also discussed in brief.
基金This study was supported financially by the MEXT "Collaboration with Local Communities" Project (2005-2009).
文摘The crystalline phase transition of aliphatic nylon 10/10 has been investigated on the basis of the simultaneous measurement of wide-angle and small-angle X-ray scatterings, the infrared spectral measurement and the molecular dynamics calculation. An interpretation of infrared spectra taken for a series of nylon samples and the corresponding model compounds was successfully made, allowing us to assign the infrared bands of the planar-zigzag methylene segments reasonably. As a result the methylene segmental parts of molecular chains were found to experience an order-to-disorder transition in the Brill transition region, where the intermolecular hydrogen bonds are kept alive although the bond strength becomes weaker at higher temperature. The small-angle X-ray scattering data revealed a slight change in lamellar stacking mode in the transition region. The crystal structure has been found to change more remarkably in the temperature region immediately below the melting point, where the conformationally disordered chains experienced drastic rotational and translational motions without any constraints by hydrogen bonds, and the lamellar thickness increased largely along the chain axis. These experimental results were reasonably reproduced by the molecular dynamics calculation performed at the various temperatures.
基金This work was partially supported by the Hungarian Science Foundation (OTKA F034333). The author was also supported by the Bolyai Research Fellowship.
文摘In this paper we would like to give a brief review about the extensibility of the liquid-liquid locus into the negativepressure region. Negative pressure states are hardly explored; most researchers believe that the pressure scale ends at p = 0.We would like to show that this is not true, the p = 0 point is not a special point for liquids, it can be 'easily' crossed. We aregoing to give a few example, where the extension of liquid-liquid locus for polymer blends and solutions below p = 0 givesus some interesting results, like the merging of UCST and LCST branches in weakly interacting polymer solutions or thereason why most UCST blends exhibit pressure induced immiscibility. Also, we will see what happens with the immiscibilityisland of aqueous polymer solutions when -- reaching the critical molar mass -- it 'disappears'.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11204157 and 11174179)the China Three Gorges University Project (Grant No.KJ2011B068)the Yichang City Project,China (Grant No.A201230229)
文摘The ferrimagnetism and quantum phase transition of a bipartite lozenge periodic Anderson-like organic polymer, in which the localized f electrons hybridize with the odd site conduction orbitals, are investigated by means of Green's function theory. The ground state turns out to be gapless ferrimagnetism. At a finite temperature, the ferrimagnetic-to- paramagnetic phase transition takes place. The Kondo screenings and Ruderman-Kittel-Kasuya-Yosida (RKKY) inter- action can reduce and increase the transition temperature, respectively. Two Kondo screenings compete with each other, giving rise to the localized f electron spin screened antiferromagnetically. Accordingly, in a magnetic field, all spins are aligned along the chain easily, which is associated with metal-insulator transition. Furthermore, in a temperature-field plane, we reveal the gapless and spin polarized phases, which are characterized by susceptibility and specific heat, and whose behaviours are determined by the competition between the up-spin and down-spin hole excitations.
基金Supported by the National Natural Science Foundation of China(Grant No.59803002) and the State EducationalMinistry for the Ove
文摘The present paper covers the phase behavior of poly(pbenzamide)(PBA)/Nylon 6/H 2SO 4 and poly(pphenylene terephthalamide) (PPTA)/Nylon 6/H 2SO 4 systems. The transition temperatures detected by the Depolarized Light Intensity measurements were used to construct the phase diagram in which the influence of temperature was shown. The enhanced depolarized light intensity observed in the ternary system suggests that the coil polymer chains may tend to be extended and contribute to the overall anisotropy of the liquid crystal phase.
文摘The thawing time of ice and freezed Salomon fish during high pressure assisted thawing process was evaluated by computer simulation using a finite element and the results were compared with those under atmospheric pressure. The apparent specific heat method was adopted to treat the release of latent heat. The effects of different factors on the high pressure assisted thawing process were analyzed. The time reductions of different sample dimensions were estimated and the temperature contour of thawing at different conditions was obtained. The results showed that the temperature gap of phase transition was the main factor, which could shorten the thawing time. Moreover, a second order relationship was obtained between pressure and phase transition time.
基金This work was supported by the National Key Research and Development Program of China[2017YFC0307604].
文摘The epoxy shape memory polymer(SMP)with adjustable phase transition temperature is a kind of high-performance shape mem-ory polymer,which can change its phase transition temperature and improve its mechanical properties through the process of photo curing.An epoxy SMP constitutive model combining phase transition and viscoelasticity is established by discretizing the epoxy SMP into several glass phase units and rubbery phase units in this paper.The model includes the viscoelastic constitutive equa-tions of glass phase units and rubber phase units,the parameter expression during shape memory process,and material parameter equation during photocuring process.And the stress relaxation behavior of epoxy SMP at different temperatures and the change of material parameters during the photo-curing process are simu-lated numerically,and the simulation results perform consistency with the experimental data.The model can not only relate shape memory effect and phase transformation in physics but also better characterize the viscoelastic properties of SMP and predict the shape memory response of SMP.
文摘Thick film of Polystyrene (PS)/CdS semiconducting optical nanocomposite has been synthesized by dispersing nanofiller particles of CdS in PS matrix. The nanostructure of the CdS particles has been ascertained through X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Small angle x-ray scattering analysis has been performed in order to ascertain nanocomposite character of the PS/CdS sample. Scanning Electron Microscopy (SEM) analyses of these samples have been carried out to establish the surface morphology. Optical Absorption Spectroscopy is used to measure the energy band gap of PS/CdS nanocomposite by using Tauc relation whereas Transient Plane Source Technique is used for the determination of thermal conductivity of the prepared samples. The phase transition temperature and elastic response of the prepared samples have been ascertained through Dynamic Mechanical Analyzer (DMA). This study reveals that the thermal conductivity, Young’s modulus and the toughness of the material are greatly influenced by the existence of interfacial energetic interaction between dispersed CdS nanofiller particles and matrix of PS.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11464004 and 11864006)the State Scholarship Fund,China(Grant No.20173015)Guizhou Scientific and Technological Program,China(Grant No.20185781)
文摘With a view of detecting the effects of macromolecular crowding on the phase transition of DNA compaction confined in spherical space,Monte Carlo simulations of DNA compaction in free space,in confined spherical space without crowders and in confined spherical space with crowders were performed separately.The simulation results indicate that macromolecular crowding effects on DNA compaction are dominant over the roles of multivalent counterions.In addition,effects of temperature on the phase transition of DNA compaction have been identified in confined spherical space with different radii.In confined spherical space without crowders,the temperature corresponding to phase transition depends on the radius of the confined spherical space linearly.In contrast,with the addition of crowders to the confined spherical space,effects of temperature on the phase transition of DNA compaction become insignificant,whereas the phase transition at different temperatures strongly depends on the size of crowder,and the critical volume fraction of crowders pertains to the diameter of crowder linearly.
基金Project supported by the National Basic Research Program of China(Grant Nos.2010CB832803 and 2012CB821301)the National Natural Science Foundation of China(Grant Nos.11004222 and 91121016)the Chinese Academy of Sciences
文摘We observed the linear-to-zigzag structural phase transition of a ^40Ca^+ crystal in a homemade linear Paul trap. The values of the total temperature of the ion crystals during the phase transition are derived using the molecular-dynamics(MD) simulation method. A series of simulations revealed that the ratio of the radial to axial secular frequencies has a dependence on the total temperature that obeys different functional forms for linear and zigzag structures, and the transition point occurs where these functions intersect; thus, the critical value of the ratio of secular frequencies that drives the structure phase transition can be derived.
基金the support from the RGC of Hong Kong SAR China (Grant Nos. GRF 17303019 and 17301420)the National Key Research and Development Program of China (Grant No. 2016YFA0300502)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No. XDB33000000)support from the National Natural Science Foundation of China (Grant No. 12004020)AWS was supported by the NSF (Grant No. DMR-1710170)by the Simons Foundation (Grant No. 511064)。
文摘Recent experiments [Guo et al., Phys. Rev. Lett. 124 206602(2020)] on thermodynamic properties of the frustrated layered quantum magnet SrCu_(2)(BO_(3))_(2)-the Shastry–Sutherland material-have provided strong evidence for a lowtemperature phase transition between plaquette-singlet and antiferromagnetic order as a function of pressure. Further motivated by the recently discovered unusual first-order quantum phase transition with an apparent emergent O(4) symmetry of the antiferromagnetic and plaquette-singlet order parameters in a two-dimensional "checkerboard J-Q" quantum spin model[Zhao et al., Nat. Phys. 15 678(2019)], we here study the same model in the presence of weak inter-layer couplings. Our focus is on the evolution of the emergent symmetry as the system crosses over from two to three dimensions and the phase transition extends from strictly zero temperature in two dimensions up to finite temperature as expected in SrCu_(2)(BO_(3))_(2).Using quantum Monte Carlo simulations, we map out the phase boundaries of the plaquette-singlet and antiferromagnetic phases, with particular focus on the triple point where these two ordered phases meet the paramagnetic phase for given strength of the inter-layer coupling. All transitions are first-order in the neighborhood of the triple point. We show that the emergent O(4) symmetry of the coexistence state breaks down clearly when the interlayer coupling becomes sufficiently large, but for a weak coupling, of the magnitude expected experimentally, the enlarged symmetry can still be observed at the triple point up to significant length scales. Thus, it is likely that the plaquette-singlet to antiferromagnetic transition in SrCu_(2)(BO_(3))_(2) exhibits remnants of emergent O(4) symmetry, which should be observable due to additional weakly gapped Goldstone modes.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10875166 and 11274355
文摘We investigate the granular flow states in a channel with bottleneck by molecular dynamics simulations.Our study is restricted only on a selected key area rather than on the whole system to focus on the flow properties of a single granular state.A random force field is introduced to control the granular temperature.It is also pointed out that the flow rate in the granular flow can be correlated with the pressure,which leads us to carry out a comprehensive study similar to the classical study for general liquid-gas phase transition.Our results show that the dilute flow state and the dense flow state of the granules are similar to the gas state and the liquid state of general substances,respectively,and the properties of phase transition and critical phenomenon are also similar to those occurring in general substances.
文摘The purpose of this work is to identify the universality class of the nonequilibrium phase transition in the two-dimensional kinetic Ising ferromagnet driven by propagating magnetic field wave. To address this issue, the finite size analysis of the nonequilibrium phase transition, in two-dimensional Ising ferromagnet driven by plane propagating magnetic wave, is studied by Monte Carlo simulation. It is observed that the system undergoes a nonequilibrium dynamic phase transition from a high temperature dynamically symmetric (propagating) phase to a low temperature dynamically symmetry-broken (pinned) phase as the system is cooled below the transition temperature. This transition temperature is determined precisely by studying the fourth-order Binder Cumulant of the dynamic order parameter as a function of temperature for different system sizes (L). From the finite size analysis of dynamic order parameter ?and the dynamic susceptibility , we have estimated the critical exponents and ?(measured from the data read at the critical temperature obtained from Binder cumulant), and (measured from the peak positions of dynamic susceptibility). Our results indicate that such driven Ising ferromagnet belongs to the same universality class of the two-dimensional equilibrium Ising ferromagnet (where and ), within the limits of statistical errors.
文摘Five kinds of side chain liquid crystalline polymers with a chiral component in the pendant group were synthesized and characterized by GPC, polarizing microscopy, DSC, X-ray diffraction ano Dielectric Relaxation Spectroscopy. The liquid crystalline behaviour of the polymers is affected by the length of flexible spacer, which links the mesogenic side chain to the polymer backbone and mesogenic moiety. The characteristic of smectic phase is observed for all the polymers.
基金Project supported by the Natural Science Foundation of Zhejiang Province,China(Grant No.LY20A040004)the National Natural Science Foundation of China(Grant Nos.11604232,11674277,11704210,and 11974305)。
文摘The equilibrium distribution of a polymer chain between two interconnected spherical cavities (a small one with radius Rs and a large one with radius Rl) is studied by using Monte Carlo simulation. A conformational transition from a double-cavity-occupation (DCO) state to a single-cavity-occupation (SCO) state is observed. The dependence of the critical radius of the small cavity (RsC) where the transition occurs on Rl and the polymer length N can be described by RsC∝N1/3R1^1-1/3v with ν being the Flory exponent, and meanwhile the equilibrium number (ms) of monomers in the small cavity for the DCO phase can be expressed as ms = N/((Rl/Rs)3 + 1), which can be quantitatively understood by using the blob picture. Moreover, in the SCO phase, the polymer is found to prefer staying in the large cavity.
基金Project supported financially by the National Natural Science Foundation of China (Grant No. 52372100)the National Key Research and Development Program of China (Grant No. 2019YFA0307900)。
文摘Based on the principles of thermodynamics, we elucidate the fundamental reasons behind the hysteresis of spontaneous polarization in ferroelectric materials during heating and cooling processes. By utilizing the effective Hamiltonian method in conjuction with the phase-field model, we have successfully reproduced the thermal hysteresis observed in ferroelectric materials during phase transitions. The computational results regarding the electrocaloric effect from these two different computational scales closely align with experimental measurements. Furthermore, we analyze how the first-order ferroelectric phase transition gradually diminishes with an increasing applied electric field, exhibiting characteristics of second-order-like phase transition. By employing the characteristic parameters of thermal hysteresis, we have established a pathway for calculations across different computational scales, thereby providing theoretical support for further investigations into the properties of ferroelectric materials through concurrent multiscale simulations.