Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,w...Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,which are commonly utilized in radiology.To fully exploit their potential,researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems.However,constructing and compressing these systems presents a significant challenge,as it relies heavily on the expertise of data scientists.To tackle this issue,we propose an automated approach that utilizes an evolutionary algorithm(EA)to optimize the design and compression of a convolutional neural network(CNN)for X-Ray image classification.Our approach accurately classifies radiography images and detects potential chest abnormalities and infections,including COVID-19.Furthermore,our approach incorporates transfer learning,where a pre-trainedCNNmodel on a vast dataset of chest X-Ray images is fine-tuned for the specific task of detecting COVID-19.This method can help reduce the amount of labeled data required for the task and enhance the overall performance of the model.We have validated our method via a series of experiments against state-of-the-art architectures.展开更多
BACKGROUND Artificial intelligence(AI)has potential in the optical diagnosis of colorectal polyps.AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system(CADx)AI for ColoRectal Poly...BACKGROUND Artificial intelligence(AI)has potential in the optical diagnosis of colorectal polyps.AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system(CADx)AI for ColoRectal Polyps(AI4CRP)for the optical diagnosis of diminutive colorectal polyps and to compare the performance with CAD EYE^(TM)(Fujifilm,Tokyo,Japan).CADx influence on the optical diagnosis of an expert endoscopist was also investigated.METHODS AI4CRP was developed in-house and CAD EYE was proprietary software provided by Fujifilm.Both CADxsystems exploit convolutional neural networks.Colorectal polyps were characterized as benign or premalignant and histopathology was used as gold standard.AI4CRP provided an objective assessment of its characterization by presenting a calibrated confidence characterization value(range 0.0-1.0).A predefined cut-off value of 0.6 was set with values<0.6 indicating benign and values≥0.6 indicating premalignant colorectal polyps.Low confidence characterizations were defined as values 40%around the cut-off value of 0.6(<0.36 and>0.76).Self-critical AI4CRP’s diagnostic performances excluded low confidence characterizations.RESULTS AI4CRP use was feasible and performed on 30 patients with 51 colorectal polyps.Self-critical AI4CRP,excluding 14 low confidence characterizations[27.5%(14/51)],had a diagnostic accuracy of 89.2%,sensitivity of 89.7%,and specificity of 87.5%,which was higher compared to AI4CRP.CAD EYE had a 83.7%diagnostic accuracy,74.2%sensitivity,and 100.0%specificity.Diagnostic performances of the endoscopist alone(before AI)increased nonsignificantly after reviewing the CADx characterizations of both AI4CRP and CAD EYE(AI-assisted endoscopist).Diagnostic performances of the AI-assisted endoscopist were higher compared to both CADx-systems,except for specificity for which CAD EYE performed best.CONCLUSION Real-time use of AI4CRP was feasible.Objective confidence values provided by a CADx is novel and self-critical AI4CRP showed higher diagnostic performances compared to AI4CRP.展开更多
The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring ...The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring healthy and normal tissue;however,the malignant could affect the adjacent brain tissues,which results in death.Initial recognition of BT is highly significant to protecting the patient’s life.Generally,the BT can be identified through the magnetic resonance imaging(MRI)scanning technique.But the radiotherapists are not offering effective tumor segmentation in MRI images because of the position and unequal shape of the tumor in the brain.Recently,ML has prevailed against standard image processing techniques.Several studies denote the superiority of machine learning(ML)techniques over standard techniques.Therefore,this study develops novel brain tumor detection and classification model using met heuristic optimization with machine learning(BTDC-MOML)model.To accomplish the detection of brain tumor effectively,a Computer-Aided Design(CAD)model using Machine Learning(ML)technique is proposed in this research manuscript.Initially,the input image pre-processing is performed using Gaborfiltering(GF)based noise removal,contrast enhancement,and skull stripping.Next,mayfly optimization with the Kapur’s thresholding based segmentation process takes place.For feature extraction proposes,local diagonal extreme patterns(LDEP)are exploited.At last,the Extreme Gradient Boosting(XGBoost)model can be used for the BT classification process.The accuracy analysis is performed in terms of Learning accuracy,and the validation accuracy is performed to determine the efficiency of the proposed research work.The experimental validation of the proposed model demonstrates its promising performance over other existing methods.展开更多
Computer-aided diagnosis(CAD)models exploit artificial intelligence(AI)for chest X-ray(CXR)examination to identify the presence of tuberculosis(TB)and can improve the feasibility and performance of CXR for TB screenin...Computer-aided diagnosis(CAD)models exploit artificial intelligence(AI)for chest X-ray(CXR)examination to identify the presence of tuberculosis(TB)and can improve the feasibility and performance of CXR for TB screening and triage.At the same time,CXR interpretation is a time-consuming and subjective process.Furthermore,high resemblance among the radiological patterns of TB and other lung diseases can result in misdiagnosis.Therefore,computer-aided diagnosis(CAD)models using machine learning(ML)and deep learning(DL)can be designed for screening TB accurately.With this motivation,this article develops a Water Strider Optimization with Deep Transfer Learning Enabled Tuberculosis Classification(WSODTL-TBC)model on Chest X-rays(CXR).The presented WSODTL-TBC model aims to detect and classify TB on CXR images.Primarily,the WSODTL-TBC model undergoes image filtering techniques to discard the noise content and U-Net-based image segmentation.Besides,a pre-trained residual network with a two-dimensional convolutional neural network(2D-CNN)model is applied to extract feature vectors.In addition,the WSO algorithm with long short-term memory(LSTM)model was employed for identifying and classifying TB,where the WSO algorithm is applied as a hyperparameter optimizer of the LSTM methodology,showing the novelty of the work.The performance validation of the presented WSODTL-TBC model is carried out on the benchmark dataset,and the outcomes were investigated in many aspects.The experimental development pointed out the betterment of the WSODTL-TBC model over existing algorithms.展开更多
Aging is a natural process that leads to debility,disease,and dependency.Alzheimer’s disease(AD)causes degeneration of the brain cells leading to cognitive decline and memory loss,as well as dependence on others to f...Aging is a natural process that leads to debility,disease,and dependency.Alzheimer’s disease(AD)causes degeneration of the brain cells leading to cognitive decline and memory loss,as well as dependence on others to fulfill basic daily needs.AD is the major cause of dementia.Computer-aided diagnosis(CADx)tools aid medical practitioners in accurately identifying diseases such as AD in patients.This study aimed to develop a CADx tool for the early detection of AD using the Intelligent Water Drop(IWD)algorithm and the Random Forest(RF)classifier.The IWD algorithm an efficient feature selection method,was used to identify the most deterministic features of AD in the dataset.RF is an ensemble method that leverages multiple weak learners to classify a patient’s disease as either demented(DN)or cognitively normal(CN).The proposed tool also classifies patients as mild cognitive impairment(MCI)or CN.The dataset on which the performance of the proposed CADx was evaluated was sourced from the Alzheimer’s Disease Neuroimaging Initiative(ADNI).The RF ensemble method achieves 100%accuracy in identifying DN patients from CN patients.The classification accuracy for classifying patients as MCI or CN is 92%.This study emphasizes the significance of pre-processing prior to classification to improve the classification results of the proposed CADx tool.展开更多
Age-related Macular Degeneration(AMD)and Diabetic Macular Edema(DME)are two com-mon retinal diseases for elder people that may ultimately cause irreversible blindness.Timely and accurate diagnosis is essential for the...Age-related Macular Degeneration(AMD)and Diabetic Macular Edema(DME)are two com-mon retinal diseases for elder people that may ultimately cause irreversible blindness.Timely and accurate diagnosis is essential for the treatment of these diseases.In recent years,computer-aided diagnosis(CAD)has been deeply investigated and effectively used for rapid and early diagnosis.In this paper,we proposed a method of CAD using vision transformer to analyze optical co-herence tomography(OCT)images and to automatically discriminate AMD,DME,and normal eyes.A classification accuracy of 99.69%was achieved.After the model pruning,the recognition time reached 0.010 s and the classification accuracy did not drop.Compared with the Con-volutional Neural Network(CNN)image classification models(VGG16,Resnet50,Densenet121,and EfficientNet),vision transformer after pruning exhibited better recognition ability.Results show that vision transformer is an improved alternative to diagnose retinal diseases more accurately.展开更多
Objective To evaluate and reduce inter-observer variations in the detection and characterization of pulmonary nodules on digital radiograph (DR) chest images. Methods Two hundreds and thirty-two new posterior-anteri...Objective To evaluate and reduce inter-observer variations in the detection and characterization of pulmonary nodules on digital radiograph (DR) chest images. Methods Two hundreds and thirty-two new posterior-anterior DR chest images were collected from out-patient screening patients. Consensus was reached by two experienced radiologists on the marking, rating, and segmentation of small actionable nodules ranged from 5 to 15 mm in diameter using a computer-aided diagnosis (CAD) system. Both their own nodule findings and the computer's automatic nodule detection results were analyzed to make the consensus. Nodules identified together with corresponding likelihood rating and segmentation results were referred as "Gold Stand- ard". Two un-experienced radiologists were asked to first mark and characterize suspicious nodules independently, then were allowed to consult the computer nodule detection results and change their decisions. Results Large inter-observer variations in pulmonary nodule identification and characterization on DR chest images were observed between un-experienced radiologists. Un-expefienced radiologists could greatly benefit from the CAD system, including substantial decrease of inter-observer variation and improvement of nodule detection rates. Moreover, radiologists with different levels of skillfulness could achieve similar high level performance after using the CAD system. Conclusion The CAD system shows a high potential for providing a valuable assistance to the examination of DR chest images.展开更多
Diabetic retinopathy(DR)diagnosis through digital fundus images requires clinical experts to recognize the presence and importance of many intricate features.This task is very difficult for ophthalmologists and timeco...Diabetic retinopathy(DR)diagnosis through digital fundus images requires clinical experts to recognize the presence and importance of many intricate features.This task is very difficult for ophthalmologists and timeconsuming.Therefore,many computer-aided diagnosis(CAD)systems were developed to automate this screening process ofDR.In this paper,aCAD-DR system is proposed based on preprocessing and a pre-train transfer learningbased convolutional neural network(PCNN)to recognize the five stages of DR through retinal fundus images.To develop this CAD-DR system,a preprocessing step is performed in a perceptual-oriented color space to enhance the DR-related lesions and then a standard pre-train PCNN model is improved to get high classification results.The architecture of the PCNN model is based on three main phases.Firstly,the training process of the proposed PCNN is accomplished by using the expected gradient length(EGL)to decrease the image labeling efforts during the training of the CNN model.Secondly,themost informative patches and images were automatically selected using a few pieces of training labeled samples.Thirdly,the PCNN method generated useful masks for prognostication and identified regions of interest.Fourthly,the DR-related lesions involved in the classification task such as micro-aneurysms,hemorrhages,and exudates were detected and then used for recognition of DR.The PCNN model is pre-trained using a high-end graphical processor unit(GPU)on the publicly available Kaggle benchmark.The obtained results demonstrate that the CAD-DR system outperforms compared to other state-of-the-art in terms of sensitivity(SE),specificity(SP),and accuracy(ACC).On the test set of 30,000 images,the CAD-DR system achieved an average SE of 93.20%,SP of 96.10%,and ACC of 98%.This result indicates that the proposed CAD-DR system is appropriate for the screening of the severity-level of DR.展开更多
Diabetic Retinopathy(DR)is a significant blinding disease that poses serious threat to human vision rapidly.Classification and severity grading of DR are difficult processes to accomplish.Traditionally,it depends on o...Diabetic Retinopathy(DR)is a significant blinding disease that poses serious threat to human vision rapidly.Classification and severity grading of DR are difficult processes to accomplish.Traditionally,it depends on ophthalmoscopically-visible symptoms of growing severity,which is then ranked in a stepwise scale from no retinopathy to various levels of DR severity.This paper presents an ensemble of Orthogonal Learning Particle Swarm Optimization(OPSO)algorithm-based Convolutional Neural Network(CNN)Model EOPSO-CNN in order to perform DR detection and grading.The proposed EOPSO-CNN model involves three main processes such as preprocessing,feature extraction,and classification.The proposed model initially involves preprocessing stage which removes the presence of noise in the input image.Then,the watershed algorithm is applied to segment the preprocessed images.Followed by,feature extraction takes place by leveraging EOPSO-CNN model.Finally,the extracted feature vectors are provided to a Decision Tree(DT)classifier to classify the DR images.The study experiments were carried out using Messidor DR Dataset and the results showed an extraordinary performance by the proposed method over compared methods in a considerable way.The simulation outcome offered the maximum classification with accuracy,sensitivity,and specificity values being 98.47%,96.43%,and 99.02%respectively.展开更多
The aim of this study was to prospectively assess the accuracy gain of Bayesian analysis-based computeraided diagnosis(CAD) vs human judgment alone in characterizing solitary pulmonary nodules(SPNs) at computed tomogr...The aim of this study was to prospectively assess the accuracy gain of Bayesian analysis-based computeraided diagnosis(CAD) vs human judgment alone in characterizing solitary pulmonary nodules(SPNs) at computed tomography(CT). The study included 100 randomly selected SPNs with a definitive diagnosis. Nodule features at first and follow-up CT scans as well as clinical data were evaluated individually on a 1 to 5 points risk chart by 7 radiologists, firstly blinded then aware of Bayesian Inference Malignancy Calculator(BIMC) model predictions. Raters' predictions were evaluated by means of receiver operating characteristic(ROC) curve analysis and decision analysis. Overall ROC area under the curve was 0.758 before and 0.803 after the disclosure of CAD predictions(P = 0.003). A net gain in diagnostic accuracy was found in 6 out of 7 readers. Mean risk class of benign nodules dropped from 2.48 to 2.29, while mean risk class of malignancies rose from 3.66 to 3.92. Awareness of CAD predictions also determined a significant drop on mean indeterminate SPNs(15 vs 23.86 SPNs) and raised the mean number of correct and confident diagnoses(mean 39.57 vs 25.71 SPNs). This study provides evidence supporting the integration of the Bayesian analysis-based BIMC model in SPN characterization.展开更多
Computer-aided diagnosis(CAD) has become one of the major research subjects in medical imaging and diagnostic radiology.The basic concept of CAD is to provide computer output as a second opinion to assist radiologists...Computer-aided diagnosis(CAD) has become one of the major research subjects in medical imaging and diagnostic radiology.The basic concept of CAD is to provide computer output as a second opinion to assist radiologists' image interpretations by improving the accuracy and consistency of radiologic diagnosis and also by reducing the image-reading time.To date,research on CAD in ultrasound(US)-based diagnosis has been carried out mostly for breast lesions and has been limited in the fields of gastroenterology and hepatology,with most studies being conducted using B-mode US images.Two CAD schemes with contrast-enhanced US(CEUS) that are used in classifying focal liver lesions(FLLs) as liver metastasis,hemangioma,or three histologically differentiated types of hepatocellular carcinoma(HCC) are introduced in this article:one is based on physicians' subjective pattern classifications(subjective analysis) and the other is a computerized scheme for classification of FLLs(quantitative analysis).Classification accuracies for FLLs for each CAD scheme were 84.8% and 88.5% for metastasis,93.3% and 93.8% for hemangioma,and 98.6% and 86.9% for all HCCs,respectively.In addition,the classification accuracies for histologic differentiation of HCCs were 65.2% and 79.2% for well-differentiated HCCs,41.7% and 50.0% for moderately differentiated HCCs,and 80.0% and 77.8% for poorly differentiated HCCs,respectively.There are a number of issues concerning the clinical application of CAD for CEUS,however,it is likely that CAD for CEUS of the liver will make great progress in the future.展开更多
Objective: Computer classification of sonographic BI-RADS features can aid differentiation of the malignant and benign masses. However, the variability in the diagnosis due to the differences in the observed features ...Objective: Computer classification of sonographic BI-RADS features can aid differentiation of the malignant and benign masses. However, the variability in the diagnosis due to the differences in the observed features between the observations is not known. The goal of this study is to measure the variation in sonographic features between multiple observations and determine the effect of features variation on computer-aided diagnosis of the breast masses. Materials and Methods: Ultrasound images of biopsy proven solid breast masses were analyzed in three independent observations for BI-RADS sonographic features. The BI-RADS features from each observation were used with Bayes classifier to determine probability of malignancy. The observer agreement in the sonographic features was measured by kappa coefficient and the difference in the diagnostic performances between observations was determined by the area under the ROC curve, Az, and interclass correlation coefficient. Results: While some features were repeatedly observed, κ = 0.95, other showed a significant variation, κ = 0.16. For all features, combined intra-observer agreement was substantial, κ = 0.77. The agreement, however, decreased steadily to 0.66 and 0.56 as time between the observations increased from 1 to 2 and 3 months, respectively. Despite the variation in features between observations the probabilities of malignancy estimates from Bayes classifier were robust and consistently yielded same level of diagnostic performance, Az was 0.772-0.817 for sonographic features alone and 0.828-0.849 for sonographic features and age combined. The difference in the performance, ΔAz, between the observations for the two groups was small (0.003-0.044) and was not statistically significant (p < 0.05). Interclass correlation coefficient for the observations was 0.822 (CI: 0.787-0.853) for BI-RADS sonographic features alone and for those combined with age was 0.833 (CI: 0.800-0.862). Conclusion: Despite the differences in the BI-RADS sonographic features between different observations, the diagnostic performance of computer-aided analysis for differentiating breast masses did not change. Through continual retraining, the computer-aided analysis provides consistent diagnostic performance independent of the variations in the observed sonographic features.展开更多
AIM: To investigate and evaluate the feasibility of the computer-aided screening diagnosis for enteric lesions in the capsule endoscopy (CE).METHODS: After developing a series of algorithms for the screening diagnosis...AIM: To investigate and evaluate the feasibility of the computer-aided screening diagnosis for enteric lesions in the capsule endoscopy (CE).METHODS: After developing a series of algorithms for the screening diagnosis of the enteric lesions in CE based on their characteristic colors and contours, the normal and abnormal images obtained from 289 patients were respectively scanned and diagnosed by the CE readers and by the computer-aided screening for the enteric lesions with the image-processed software (IPS). The enteric lesions shown by the images included esoenteritis, mucosal ulcer and erosion, bleeding, space-occupying lesions, angioectasia, diverticula, parasites, etc. The images for the lesions or the suspected lesions confirmed by the CE readers and the computers were collected, and the effectiveness rate of the screening and the number of the scanned images were evaluated, respectively.RESULTS: Compared with the diagnostic results obtained by the CE readers, the total effectiveness rate (sensitivity) in the screening of the commonly-encountered enteric lesions by IPS varied from 42.9% to 91.2%, with a median of 74.2%, though the specificity and the accuracy rates were still low, and theimages for the rarely-encountered lesions were difficult to differentiate from the normal images. However, the number of the images screened by IPS was 5000 on average, and only 10%-15% of the original images were left behind. As a result, a large number of normal images were excluded, and the reading time decreased from 5 h to 1 h on average.CONCLUSION: Though the total accuracy and specificity rates by the computer-aided screening for the enteric lesions with IPS are much lower than those by the CE readers, the computer-aided screening diagnosis can exclude a large number of the normal images and confine the enteric lesions to 5000 images on average, which can reduce the workload of the readers in the scanning of the images. This computer-aided screening technique can make a correct diagnosis as efficiently as possible in most of the patients.展开更多
To the Editor:Alzheimer’s disease(AD)is an irreversible chronic neurodegenerative disease.AD initially affects short-term memory,thinking,and behavior.It then severely disrupts the normal lives of patients and their ...To the Editor:Alzheimer’s disease(AD)is an irreversible chronic neurodegenerative disease.AD initially affects short-term memory,thinking,and behavior.It then severely disrupts the normal lives of patients and their families and may eventually lead to death.Mild cognitive impairment(MCI)is considered an early stage of AD.Some studies have shown that nearly 20%of patients with MCI are at a risk of developing AD within the next four years.[1]Although there is no impressive way to stop the further development of MCI,only a series of procedures can slow it.Thus,timely and accurate intervention is essential to effectively slow the disease progression.展开更多
Deep neural network(DNN)based computer-aided breast tumor diagnosis(CABTD)method plays a vital role in the early detection and diagnosis of breast tumors.However,a Brightness mode(B-mode)ultrasound image derives train...Deep neural network(DNN)based computer-aided breast tumor diagnosis(CABTD)method plays a vital role in the early detection and diagnosis of breast tumors.However,a Brightness mode(B-mode)ultrasound image derives training feature samples that make closer isolation toward the infection part.Hence,it is expensive due to a metaheuristic search of features occupying the global region of interest(ROI)structures of input images.Thus,it may lead to the high computational complexity of the pre-trained DNN-based CABTD method.This paper proposes a novel ensemble pretrained DNN-based CABTD method using global-and local-ROI-structures of B-mode ultrasound images.It conveys the additional consideration of a local-ROI-structures for further enhan-cing the pretrained DNN-based CABTD method’s breast tumor diagnostic performance without degrading its visual quality.The features are extracted at various depths(18,50,and 101)from the global and local ROI structures and feed to support vector machine for better classification.From the experimental results,it has been observed that the combined local and global ROI structure of small depth residual network ResNet18(0.8 in%)has produced significant improve-ment in pixel ratio as compared to ResNet50(0.5 in%)and ResNet101(0.3 in%),respectively.Subsequently,the pretrained DNN-based CABTD methods have been tested by influencing local and global ROI structures to diagnose two specific breast tumors(Benign and Malignant)and improve the diagnostic accuracy(86%)compared to Dense Net,Alex Net,VGG Net,and Google Net.Moreover,it reduces the computational complexity due to the small depth residual network ResNet18,respectively.展开更多
Background This study aimed to develop features related to the lesion margin and enhancement pattern, which are very important in the radiologic diagnostic process. We also aimed to implement and investigate these fea...Background This study aimed to develop features related to the lesion margin and enhancement pattern, which are very important in the radiologic diagnostic process. We also aimed to implement and investigate these features in the computer- aided diagnosis (CAD) of hepatic diseases using computed tomography (CT). Methods We retrospectively analyzed 378 lesions with 1 512 multi-phase CT images of tiver lesions. We used ensemble methods to create classification models. Two types of features were developed and used as predictors, namely, margin features and relative spatial intensity ratio (RSIR) features. Margin features were extracted using Gabor transformation and the sigmoid function whereas RSIR features were obtained by calculating the concentration and distribution of the contrast in the lesion against the surrounding hepatic parenchyma. To assess these two types of features and compare them with other features used in previous studies, we created models for multi-class classification using different feature subsets. Accuracy, kappa, and AUC were calculated. The importance and interactions of predictors were also estimated. Results The classification model with margin features exhibited the best performance (accuracy: 0.89±0.04; kappa: 0.85±0.06), followed by that with RISR features (accuracy: 0.85±0.05; kappa: 0.79±0.07). The plots for variable importance and interactions also showed these two types of features were important in classification models and that they interacted with other features. Conclusions Lesion margin and enhancement pattern are helpful in CAD. The features we have developed are general and can be easily adapted to other diagnostic scenarios in which CT and other imaging modalities are used.展开更多
BACKGROUND Colorectal cancer(CRC)is a global health concern,with advanced-stage diagnoses contributing to poor prognoses.The efficacy of CRC screening has been well-established;nevertheless,a significant proportion of...BACKGROUND Colorectal cancer(CRC)is a global health concern,with advanced-stage diagnoses contributing to poor prognoses.The efficacy of CRC screening has been well-established;nevertheless,a significant proportion of patients remain unscreened,with>70%of cases diagnosed outside screening.Although identifying specific subgroups for whom CRC screening should be particularly recommended is crucial owing to limited resources,the association between the diagnostic routes and identification of these subgroups has been less appreciated.In the Japanese cancer registry,the diagnostic routes for groups discovered outside of screening are primarily categorized into those with comorbidities found during hospital visits and those with CRC-related symptoms.AIM To clarify the stage at CRC diagnosis based on diagnostic routes.METHODS We conducted a retrospective observational study using a cancer registry of patients with CRC between January 2016 and December 2019 at two hospitals.The diagnostic routes were primarily classified into three groups:Cancer screening,follow-up,and symptomatic.The early-stage was defined as Stages 0 or I.Multivariate and univariate logistic regressions were exploited to determine the odds of early-stage diagnosis in the symptomatic and cancer screening groups,referencing the follow-up group.The adjusted covariates were age,sex,and tumor location.RESULTS Of the 2083 patients,715(34.4%),1064(51.1%),and 304(14.6%)belonged to the follow-up,symptomatic,and cancer screening groups,respectively.Among the 2083 patients,CRCs diagnosed at an early stage were 57.3%(410 of 715),23.9%(254 of 1064),and 59.5%(181 of 304)in the follow-up,symptomatic,and cancer screening groups,respectively.The symptomatic group exhibited a lower likelihood of early-stage diagnosis than the follow-up group[P<0.001,adjusted odds ratio(aOR),0.23;95%confidence interval(95%CI):0.19-0.29].The likelihood of diagnosis at an early stage was similar between the follow-up and cancer screening groups(P=0.493,aOR for early-stage diagnosis in the cancer screening group vs follow-up group=1.11;95%CI=0.82-1.49).CONCLUSION CRCs detected during hospital visits for comorbidities were diagnosed earlier,similar to cancer screening.CRC screening should be recommended,particularly for patients without periodical hospital visits for comorbidities.展开更多
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection.[1,2]Septic shock,the most severe form of sepsis,is characterized by circulatory and cellular/metabolic abnor...Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection.[1,2]Septic shock,the most severe form of sepsis,is characterized by circulatory and cellular/metabolic abnormalities,and can increase mortality to>40%.[1-3]Early recognition and risk stratification of septic shock are crucial but challenging because of the heterogeneity of its presentation and progression.展开更多
BACKGROUND Prostate cancer(PCa)is a widespread malignancy,predominantly affecting elderly males,and current methods for diagnosis and treatment of this disease continue to fall short.The marker Ki-67(MKI67)has been pr...BACKGROUND Prostate cancer(PCa)is a widespread malignancy,predominantly affecting elderly males,and current methods for diagnosis and treatment of this disease continue to fall short.The marker Ki-67(MKI67)has been previously demonstrated to correlate with the proliferation and metastasis of various cancer cells,including those of PCa.Hence,verifying the association between MKI67 and the diagnosis and prognosis of PCa,using bioinformatics databases and clinical data analysis,carries significant clinical implications.AIM To explore the diagnostic and prognostic efficacy of antigens identified by MKI67 expression in PCa.METHODS For cohort 1,the efficacy of MKI67 diagnosis was evaluated using data from The Cancer Genome Atlas(TCGA)and Genotype-Tissue Expression(GTEx)databases.For cohort 2,the diagnostic and prognostic power of MKI67 expression was further validated using data from 271 patients with clinical PCa.RESULTS In cohort 1,MKI67 expression was correlated with prostate-specific antigen(PSA),Gleason Score,T stage,and N stage.The receiver operating characteristic(ROC)curve showed a strong diagnostic ability,and the Kaplan-Meier method demonstrated that MKI67 expression was negatively associated with the progression-free interval(PFI).The time-ROC curve displayed a weak prognostic capability for MKI67 expression in PCa.In cohort 2,MKI67 expression was significantly related to the Gleason Score,T stage,and N stage;however,it was negatively associated with the PFI.The time-ROC curve revealed the stronger prognostic capability of MKI67 in patients with PCa.Multivariate COX regression analysis was performed to select risk factors,including PSA level,N stage,and MKI67 expression.A nomogram was established to predict the 3-year PFI.CONCLUSION MKI67 expression was positively associated with the Gleason Score,T stage,and N stage and showed a strong diagnostic and prognostic ability in PCa.展开更多
Dear Editor,This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in ...Dear Editor,This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in the perspective of vision.展开更多
基金via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2023/R/1444).
文摘Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,which are commonly utilized in radiology.To fully exploit their potential,researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems.However,constructing and compressing these systems presents a significant challenge,as it relies heavily on the expertise of data scientists.To tackle this issue,we propose an automated approach that utilizes an evolutionary algorithm(EA)to optimize the design and compression of a convolutional neural network(CNN)for X-Ray image classification.Our approach accurately classifies radiography images and detects potential chest abnormalities and infections,including COVID-19.Furthermore,our approach incorporates transfer learning,where a pre-trainedCNNmodel on a vast dataset of chest X-Ray images is fine-tuned for the specific task of detecting COVID-19.This method can help reduce the amount of labeled data required for the task and enhance the overall performance of the model.We have validated our method via a series of experiments against state-of-the-art architectures.
文摘BACKGROUND Artificial intelligence(AI)has potential in the optical diagnosis of colorectal polyps.AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system(CADx)AI for ColoRectal Polyps(AI4CRP)for the optical diagnosis of diminutive colorectal polyps and to compare the performance with CAD EYE^(TM)(Fujifilm,Tokyo,Japan).CADx influence on the optical diagnosis of an expert endoscopist was also investigated.METHODS AI4CRP was developed in-house and CAD EYE was proprietary software provided by Fujifilm.Both CADxsystems exploit convolutional neural networks.Colorectal polyps were characterized as benign or premalignant and histopathology was used as gold standard.AI4CRP provided an objective assessment of its characterization by presenting a calibrated confidence characterization value(range 0.0-1.0).A predefined cut-off value of 0.6 was set with values<0.6 indicating benign and values≥0.6 indicating premalignant colorectal polyps.Low confidence characterizations were defined as values 40%around the cut-off value of 0.6(<0.36 and>0.76).Self-critical AI4CRP’s diagnostic performances excluded low confidence characterizations.RESULTS AI4CRP use was feasible and performed on 30 patients with 51 colorectal polyps.Self-critical AI4CRP,excluding 14 low confidence characterizations[27.5%(14/51)],had a diagnostic accuracy of 89.2%,sensitivity of 89.7%,and specificity of 87.5%,which was higher compared to AI4CRP.CAD EYE had a 83.7%diagnostic accuracy,74.2%sensitivity,and 100.0%specificity.Diagnostic performances of the endoscopist alone(before AI)increased nonsignificantly after reviewing the CADx characterizations of both AI4CRP and CAD EYE(AI-assisted endoscopist).Diagnostic performances of the AI-assisted endoscopist were higher compared to both CADx-systems,except for specificity for which CAD EYE performed best.CONCLUSION Real-time use of AI4CRP was feasible.Objective confidence values provided by a CADx is novel and self-critical AI4CRP showed higher diagnostic performances compared to AI4CRP.
文摘The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring healthy and normal tissue;however,the malignant could affect the adjacent brain tissues,which results in death.Initial recognition of BT is highly significant to protecting the patient’s life.Generally,the BT can be identified through the magnetic resonance imaging(MRI)scanning technique.But the radiotherapists are not offering effective tumor segmentation in MRI images because of the position and unequal shape of the tumor in the brain.Recently,ML has prevailed against standard image processing techniques.Several studies denote the superiority of machine learning(ML)techniques over standard techniques.Therefore,this study develops novel brain tumor detection and classification model using met heuristic optimization with machine learning(BTDC-MOML)model.To accomplish the detection of brain tumor effectively,a Computer-Aided Design(CAD)model using Machine Learning(ML)technique is proposed in this research manuscript.Initially,the input image pre-processing is performed using Gaborfiltering(GF)based noise removal,contrast enhancement,and skull stripping.Next,mayfly optimization with the Kapur’s thresholding based segmentation process takes place.For feature extraction proposes,local diagonal extreme patterns(LDEP)are exploited.At last,the Extreme Gradient Boosting(XGBoost)model can be used for the BT classification process.The accuracy analysis is performed in terms of Learning accuracy,and the validation accuracy is performed to determine the efficiency of the proposed research work.The experimental validation of the proposed model demonstrates its promising performance over other existing methods.
文摘Computer-aided diagnosis(CAD)models exploit artificial intelligence(AI)for chest X-ray(CXR)examination to identify the presence of tuberculosis(TB)and can improve the feasibility and performance of CXR for TB screening and triage.At the same time,CXR interpretation is a time-consuming and subjective process.Furthermore,high resemblance among the radiological patterns of TB and other lung diseases can result in misdiagnosis.Therefore,computer-aided diagnosis(CAD)models using machine learning(ML)and deep learning(DL)can be designed for screening TB accurately.With this motivation,this article develops a Water Strider Optimization with Deep Transfer Learning Enabled Tuberculosis Classification(WSODTL-TBC)model on Chest X-rays(CXR).The presented WSODTL-TBC model aims to detect and classify TB on CXR images.Primarily,the WSODTL-TBC model undergoes image filtering techniques to discard the noise content and U-Net-based image segmentation.Besides,a pre-trained residual network with a two-dimensional convolutional neural network(2D-CNN)model is applied to extract feature vectors.In addition,the WSO algorithm with long short-term memory(LSTM)model was employed for identifying and classifying TB,where the WSO algorithm is applied as a hyperparameter optimizer of the LSTM methodology,showing the novelty of the work.The performance validation of the presented WSODTL-TBC model is carried out on the benchmark dataset,and the outcomes were investigated in many aspects.The experimental development pointed out the betterment of the WSODTL-TBC model over existing algorithms.
基金The authors extend their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IF-PSAU-2021/01/18596).
文摘Aging is a natural process that leads to debility,disease,and dependency.Alzheimer’s disease(AD)causes degeneration of the brain cells leading to cognitive decline and memory loss,as well as dependence on others to fulfill basic daily needs.AD is the major cause of dementia.Computer-aided diagnosis(CADx)tools aid medical practitioners in accurately identifying diseases such as AD in patients.This study aimed to develop a CADx tool for the early detection of AD using the Intelligent Water Drop(IWD)algorithm and the Random Forest(RF)classifier.The IWD algorithm an efficient feature selection method,was used to identify the most deterministic features of AD in the dataset.RF is an ensemble method that leverages multiple weak learners to classify a patient’s disease as either demented(DN)or cognitively normal(CN).The proposed tool also classifies patients as mild cognitive impairment(MCI)or CN.The dataset on which the performance of the proposed CADx was evaluated was sourced from the Alzheimer’s Disease Neuroimaging Initiative(ADNI).The RF ensemble method achieves 100%accuracy in identifying DN patients from CN patients.The classification accuracy for classifying patients as MCI or CN is 92%.This study emphasizes the significance of pre-processing prior to classification to improve the classification results of the proposed CADx tool.
基金This work was supported by the Science and Technology innovation project of Shanghai Science and Technology Commission(19441905800)the Natural National Science Foundation of China(62175156,81827807,8210041176,82101177,61675134)+1 种基金the Project of State Key Laboratory of Ophthalmology,Optometry and Visual Science,Wenzhou Medical University(K181002)the Key R&D Program Projects in Zhejiang Province(2019C03045).
文摘Age-related Macular Degeneration(AMD)and Diabetic Macular Edema(DME)are two com-mon retinal diseases for elder people that may ultimately cause irreversible blindness.Timely and accurate diagnosis is essential for the treatment of these diseases.In recent years,computer-aided diagnosis(CAD)has been deeply investigated and effectively used for rapid and early diagnosis.In this paper,we proposed a method of CAD using vision transformer to analyze optical co-herence tomography(OCT)images and to automatically discriminate AMD,DME,and normal eyes.A classification accuracy of 99.69%was achieved.After the model pruning,the recognition time reached 0.010 s and the classification accuracy did not drop.Compared with the Con-volutional Neural Network(CNN)image classification models(VGG16,Resnet50,Densenet121,and EfficientNet),vision transformer after pruning exhibited better recognition ability.Results show that vision transformer is an improved alternative to diagnose retinal diseases more accurately.
文摘Objective To evaluate and reduce inter-observer variations in the detection and characterization of pulmonary nodules on digital radiograph (DR) chest images. Methods Two hundreds and thirty-two new posterior-anterior DR chest images were collected from out-patient screening patients. Consensus was reached by two experienced radiologists on the marking, rating, and segmentation of small actionable nodules ranged from 5 to 15 mm in diameter using a computer-aided diagnosis (CAD) system. Both their own nodule findings and the computer's automatic nodule detection results were analyzed to make the consensus. Nodules identified together with corresponding likelihood rating and segmentation results were referred as "Gold Stand- ard". Two un-experienced radiologists were asked to first mark and characterize suspicious nodules independently, then were allowed to consult the computer nodule detection results and change their decisions. Results Large inter-observer variations in pulmonary nodule identification and characterization on DR chest images were observed between un-experienced radiologists. Un-expefienced radiologists could greatly benefit from the CAD system, including substantial decrease of inter-observer variation and improvement of nodule detection rates. Moreover, radiologists with different levels of skillfulness could achieve similar high level performance after using the CAD system. Conclusion The CAD system shows a high potential for providing a valuable assistance to the examination of DR chest images.
基金Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University for funding this work through Research Group no.RG-21-07-01.
文摘Diabetic retinopathy(DR)diagnosis through digital fundus images requires clinical experts to recognize the presence and importance of many intricate features.This task is very difficult for ophthalmologists and timeconsuming.Therefore,many computer-aided diagnosis(CAD)systems were developed to automate this screening process ofDR.In this paper,aCAD-DR system is proposed based on preprocessing and a pre-train transfer learningbased convolutional neural network(PCNN)to recognize the five stages of DR through retinal fundus images.To develop this CAD-DR system,a preprocessing step is performed in a perceptual-oriented color space to enhance the DR-related lesions and then a standard pre-train PCNN model is improved to get high classification results.The architecture of the PCNN model is based on three main phases.Firstly,the training process of the proposed PCNN is accomplished by using the expected gradient length(EGL)to decrease the image labeling efforts during the training of the CNN model.Secondly,themost informative patches and images were automatically selected using a few pieces of training labeled samples.Thirdly,the PCNN method generated useful masks for prognostication and identified regions of interest.Fourthly,the DR-related lesions involved in the classification task such as micro-aneurysms,hemorrhages,and exudates were detected and then used for recognition of DR.The PCNN model is pre-trained using a high-end graphical processor unit(GPU)on the publicly available Kaggle benchmark.The obtained results demonstrate that the CAD-DR system outperforms compared to other state-of-the-art in terms of sensitivity(SE),specificity(SP),and accuracy(ACC).On the test set of 30,000 images,the CAD-DR system achieved an average SE of 93.20%,SP of 96.10%,and ACC of 98%.This result indicates that the proposed CAD-DR system is appropriate for the screening of the severity-level of DR.
文摘Diabetic Retinopathy(DR)is a significant blinding disease that poses serious threat to human vision rapidly.Classification and severity grading of DR are difficult processes to accomplish.Traditionally,it depends on ophthalmoscopically-visible symptoms of growing severity,which is then ranked in a stepwise scale from no retinopathy to various levels of DR severity.This paper presents an ensemble of Orthogonal Learning Particle Swarm Optimization(OPSO)algorithm-based Convolutional Neural Network(CNN)Model EOPSO-CNN in order to perform DR detection and grading.The proposed EOPSO-CNN model involves three main processes such as preprocessing,feature extraction,and classification.The proposed model initially involves preprocessing stage which removes the presence of noise in the input image.Then,the watershed algorithm is applied to segment the preprocessed images.Followed by,feature extraction takes place by leveraging EOPSO-CNN model.Finally,the extracted feature vectors are provided to a Decision Tree(DT)classifier to classify the DR images.The study experiments were carried out using Messidor DR Dataset and the results showed an extraordinary performance by the proposed method over compared methods in a considerable way.The simulation outcome offered the maximum classification with accuracy,sensitivity,and specificity values being 98.47%,96.43%,and 99.02%respectively.
文摘The aim of this study was to prospectively assess the accuracy gain of Bayesian analysis-based computeraided diagnosis(CAD) vs human judgment alone in characterizing solitary pulmonary nodules(SPNs) at computed tomography(CT). The study included 100 randomly selected SPNs with a definitive diagnosis. Nodule features at first and follow-up CT scans as well as clinical data were evaluated individually on a 1 to 5 points risk chart by 7 radiologists, firstly blinded then aware of Bayesian Inference Malignancy Calculator(BIMC) model predictions. Raters' predictions were evaluated by means of receiver operating characteristic(ROC) curve analysis and decision analysis. Overall ROC area under the curve was 0.758 before and 0.803 after the disclosure of CAD predictions(P = 0.003). A net gain in diagnostic accuracy was found in 6 out of 7 readers. Mean risk class of benign nodules dropped from 2.48 to 2.29, while mean risk class of malignancies rose from 3.66 to 3.92. Awareness of CAD predictions also determined a significant drop on mean indeterminate SPNs(15 vs 23.86 SPNs) and raised the mean number of correct and confident diagnoses(mean 39.57 vs 25.71 SPNs). This study provides evidence supporting the integration of the Bayesian analysis-based BIMC model in SPN characterization.
文摘Computer-aided diagnosis(CAD) has become one of the major research subjects in medical imaging and diagnostic radiology.The basic concept of CAD is to provide computer output as a second opinion to assist radiologists' image interpretations by improving the accuracy and consistency of radiologic diagnosis and also by reducing the image-reading time.To date,research on CAD in ultrasound(US)-based diagnosis has been carried out mostly for breast lesions and has been limited in the fields of gastroenterology and hepatology,with most studies being conducted using B-mode US images.Two CAD schemes with contrast-enhanced US(CEUS) that are used in classifying focal liver lesions(FLLs) as liver metastasis,hemangioma,or three histologically differentiated types of hepatocellular carcinoma(HCC) are introduced in this article:one is based on physicians' subjective pattern classifications(subjective analysis) and the other is a computerized scheme for classification of FLLs(quantitative analysis).Classification accuracies for FLLs for each CAD scheme were 84.8% and 88.5% for metastasis,93.3% and 93.8% for hemangioma,and 98.6% and 86.9% for all HCCs,respectively.In addition,the classification accuracies for histologic differentiation of HCCs were 65.2% and 79.2% for well-differentiated HCCs,41.7% and 50.0% for moderately differentiated HCCs,and 80.0% and 77.8% for poorly differentiated HCCs,respectively.There are a number of issues concerning the clinical application of CAD for CEUS,however,it is likely that CAD for CEUS of the liver will make great progress in the future.
文摘Objective: Computer classification of sonographic BI-RADS features can aid differentiation of the malignant and benign masses. However, the variability in the diagnosis due to the differences in the observed features between the observations is not known. The goal of this study is to measure the variation in sonographic features between multiple observations and determine the effect of features variation on computer-aided diagnosis of the breast masses. Materials and Methods: Ultrasound images of biopsy proven solid breast masses were analyzed in three independent observations for BI-RADS sonographic features. The BI-RADS features from each observation were used with Bayes classifier to determine probability of malignancy. The observer agreement in the sonographic features was measured by kappa coefficient and the difference in the diagnostic performances between observations was determined by the area under the ROC curve, Az, and interclass correlation coefficient. Results: While some features were repeatedly observed, κ = 0.95, other showed a significant variation, κ = 0.16. For all features, combined intra-observer agreement was substantial, κ = 0.77. The agreement, however, decreased steadily to 0.66 and 0.56 as time between the observations increased from 1 to 2 and 3 months, respectively. Despite the variation in features between observations the probabilities of malignancy estimates from Bayes classifier were robust and consistently yielded same level of diagnostic performance, Az was 0.772-0.817 for sonographic features alone and 0.828-0.849 for sonographic features and age combined. The difference in the performance, ΔAz, between the observations for the two groups was small (0.003-0.044) and was not statistically significant (p < 0.05). Interclass correlation coefficient for the observations was 0.822 (CI: 0.787-0.853) for BI-RADS sonographic features alone and for those combined with age was 0.833 (CI: 0.800-0.862). Conclusion: Despite the differences in the BI-RADS sonographic features between different observations, the diagnostic performance of computer-aided analysis for differentiating breast masses did not change. Through continual retraining, the computer-aided analysis provides consistent diagnostic performance independent of the variations in the observed sonographic features.
基金Supported by A Grant offered by West China Hospital, Sichuan University, No. 2007SZ018
文摘AIM: To investigate and evaluate the feasibility of the computer-aided screening diagnosis for enteric lesions in the capsule endoscopy (CE).METHODS: After developing a series of algorithms for the screening diagnosis of the enteric lesions in CE based on their characteristic colors and contours, the normal and abnormal images obtained from 289 patients were respectively scanned and diagnosed by the CE readers and by the computer-aided screening for the enteric lesions with the image-processed software (IPS). The enteric lesions shown by the images included esoenteritis, mucosal ulcer and erosion, bleeding, space-occupying lesions, angioectasia, diverticula, parasites, etc. The images for the lesions or the suspected lesions confirmed by the CE readers and the computers were collected, and the effectiveness rate of the screening and the number of the scanned images were evaluated, respectively.RESULTS: Compared with the diagnostic results obtained by the CE readers, the total effectiveness rate (sensitivity) in the screening of the commonly-encountered enteric lesions by IPS varied from 42.9% to 91.2%, with a median of 74.2%, though the specificity and the accuracy rates were still low, and theimages for the rarely-encountered lesions were difficult to differentiate from the normal images. However, the number of the images screened by IPS was 5000 on average, and only 10%-15% of the original images were left behind. As a result, a large number of normal images were excluded, and the reading time decreased from 5 h to 1 h on average.CONCLUSION: Though the total accuracy and specificity rates by the computer-aided screening for the enteric lesions with IPS are much lower than those by the CE readers, the computer-aided screening diagnosis can exclude a large number of the normal images and confine the enteric lesions to 5000 images on average, which can reduce the workload of the readers in the scanning of the images. This computer-aided screening technique can make a correct diagnosis as efficiently as possible in most of the patients.
文摘To the Editor:Alzheimer’s disease(AD)is an irreversible chronic neurodegenerative disease.AD initially affects short-term memory,thinking,and behavior.It then severely disrupts the normal lives of patients and their families and may eventually lead to death.Mild cognitive impairment(MCI)is considered an early stage of AD.Some studies have shown that nearly 20%of patients with MCI are at a risk of developing AD within the next four years.[1]Although there is no impressive way to stop the further development of MCI,only a series of procedures can slow it.Thus,timely and accurate intervention is essential to effectively slow the disease progression.
文摘Deep neural network(DNN)based computer-aided breast tumor diagnosis(CABTD)method plays a vital role in the early detection and diagnosis of breast tumors.However,a Brightness mode(B-mode)ultrasound image derives training feature samples that make closer isolation toward the infection part.Hence,it is expensive due to a metaheuristic search of features occupying the global region of interest(ROI)structures of input images.Thus,it may lead to the high computational complexity of the pre-trained DNN-based CABTD method.This paper proposes a novel ensemble pretrained DNN-based CABTD method using global-and local-ROI-structures of B-mode ultrasound images.It conveys the additional consideration of a local-ROI-structures for further enhan-cing the pretrained DNN-based CABTD method’s breast tumor diagnostic performance without degrading its visual quality.The features are extracted at various depths(18,50,and 101)from the global and local ROI structures and feed to support vector machine for better classification.From the experimental results,it has been observed that the combined local and global ROI structure of small depth residual network ResNet18(0.8 in%)has produced significant improve-ment in pixel ratio as compared to ResNet50(0.5 in%)and ResNet101(0.3 in%),respectively.Subsequently,the pretrained DNN-based CABTD methods have been tested by influencing local and global ROI structures to diagnose two specific breast tumors(Benign and Malignant)and improve the diagnostic accuracy(86%)compared to Dense Net,Alex Net,VGG Net,and Google Net.Moreover,it reduces the computational complexity due to the small depth residual network ResNet18,respectively.
文摘Background This study aimed to develop features related to the lesion margin and enhancement pattern, which are very important in the radiologic diagnostic process. We also aimed to implement and investigate these features in the computer- aided diagnosis (CAD) of hepatic diseases using computed tomography (CT). Methods We retrospectively analyzed 378 lesions with 1 512 multi-phase CT images of tiver lesions. We used ensemble methods to create classification models. Two types of features were developed and used as predictors, namely, margin features and relative spatial intensity ratio (RSIR) features. Margin features were extracted using Gabor transformation and the sigmoid function whereas RSIR features were obtained by calculating the concentration and distribution of the contrast in the lesion against the surrounding hepatic parenchyma. To assess these two types of features and compare them with other features used in previous studies, we created models for multi-class classification using different feature subsets. Accuracy, kappa, and AUC were calculated. The importance and interactions of predictors were also estimated. Results The classification model with margin features exhibited the best performance (accuracy: 0.89±0.04; kappa: 0.85±0.06), followed by that with RISR features (accuracy: 0.85±0.05; kappa: 0.79±0.07). The plots for variable importance and interactions also showed these two types of features were important in classification models and that they interacted with other features. Conclusions Lesion margin and enhancement pattern are helpful in CAD. The features we have developed are general and can be easily adapted to other diagnostic scenarios in which CT and other imaging modalities are used.
基金the Foundation for Cancer Research supported by Kyoto Preventive Medical Center and the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid KAKENHI,No.JP 22K21080.
文摘BACKGROUND Colorectal cancer(CRC)is a global health concern,with advanced-stage diagnoses contributing to poor prognoses.The efficacy of CRC screening has been well-established;nevertheless,a significant proportion of patients remain unscreened,with>70%of cases diagnosed outside screening.Although identifying specific subgroups for whom CRC screening should be particularly recommended is crucial owing to limited resources,the association between the diagnostic routes and identification of these subgroups has been less appreciated.In the Japanese cancer registry,the diagnostic routes for groups discovered outside of screening are primarily categorized into those with comorbidities found during hospital visits and those with CRC-related symptoms.AIM To clarify the stage at CRC diagnosis based on diagnostic routes.METHODS We conducted a retrospective observational study using a cancer registry of patients with CRC between January 2016 and December 2019 at two hospitals.The diagnostic routes were primarily classified into three groups:Cancer screening,follow-up,and symptomatic.The early-stage was defined as Stages 0 or I.Multivariate and univariate logistic regressions were exploited to determine the odds of early-stage diagnosis in the symptomatic and cancer screening groups,referencing the follow-up group.The adjusted covariates were age,sex,and tumor location.RESULTS Of the 2083 patients,715(34.4%),1064(51.1%),and 304(14.6%)belonged to the follow-up,symptomatic,and cancer screening groups,respectively.Among the 2083 patients,CRCs diagnosed at an early stage were 57.3%(410 of 715),23.9%(254 of 1064),and 59.5%(181 of 304)in the follow-up,symptomatic,and cancer screening groups,respectively.The symptomatic group exhibited a lower likelihood of early-stage diagnosis than the follow-up group[P<0.001,adjusted odds ratio(aOR),0.23;95%confidence interval(95%CI):0.19-0.29].The likelihood of diagnosis at an early stage was similar between the follow-up and cancer screening groups(P=0.493,aOR for early-stage diagnosis in the cancer screening group vs follow-up group=1.11;95%CI=0.82-1.49).CONCLUSION CRCs detected during hospital visits for comorbidities were diagnosed earlier,similar to cancer screening.CRC screening should be recommended,particularly for patients without periodical hospital visits for comorbidities.
基金supported by the National Natural Science Foundation of China(no.82374069)the Beijing Municipal Administration of Hospitals’Youth Program(no.QML20170105)the Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support“Yangfan”Project(no.ZYLX201802)。
文摘Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection.[1,2]Septic shock,the most severe form of sepsis,is characterized by circulatory and cellular/metabolic abnormalities,and can increase mortality to>40%.[1-3]Early recognition and risk stratification of septic shock are crucial but challenging because of the heterogeneity of its presentation and progression.
基金Supported by Suzhou Science and Technology Project,No.SYS2019053.
文摘BACKGROUND Prostate cancer(PCa)is a widespread malignancy,predominantly affecting elderly males,and current methods for diagnosis and treatment of this disease continue to fall short.The marker Ki-67(MKI67)has been previously demonstrated to correlate with the proliferation and metastasis of various cancer cells,including those of PCa.Hence,verifying the association between MKI67 and the diagnosis and prognosis of PCa,using bioinformatics databases and clinical data analysis,carries significant clinical implications.AIM To explore the diagnostic and prognostic efficacy of antigens identified by MKI67 expression in PCa.METHODS For cohort 1,the efficacy of MKI67 diagnosis was evaluated using data from The Cancer Genome Atlas(TCGA)and Genotype-Tissue Expression(GTEx)databases.For cohort 2,the diagnostic and prognostic power of MKI67 expression was further validated using data from 271 patients with clinical PCa.RESULTS In cohort 1,MKI67 expression was correlated with prostate-specific antigen(PSA),Gleason Score,T stage,and N stage.The receiver operating characteristic(ROC)curve showed a strong diagnostic ability,and the Kaplan-Meier method demonstrated that MKI67 expression was negatively associated with the progression-free interval(PFI).The time-ROC curve displayed a weak prognostic capability for MKI67 expression in PCa.In cohort 2,MKI67 expression was significantly related to the Gleason Score,T stage,and N stage;however,it was negatively associated with the PFI.The time-ROC curve revealed the stronger prognostic capability of MKI67 in patients with PCa.Multivariate COX regression analysis was performed to select risk factors,including PSA level,N stage,and MKI67 expression.A nomogram was established to predict the 3-year PFI.CONCLUSION MKI67 expression was positively associated with the Gleason Score,T stage,and N stage and showed a strong diagnostic and prognostic ability in PCa.
基金supported in part by the National Key R&D Program of China (2022YFB3402100)the National Science Fund for Distinguished Young Scholars of China (52025056)。
文摘Dear Editor,This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in the perspective of vision.