期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Software for automated classification of probe-based confocal laser endomicroscopy videos of colorectal polyps 被引量:7
1
作者 Barbara André Tom Vercauteren +3 位作者 Anna M Buchner Murli Krishna Nicholas Ayache Michael B Wallace 《World Journal of Gastroenterology》 SCIE CAS CSCD 2012年第39期5560-5569,共10页
AIM:To support probe-based confocal laser endomi-croscopy (pCLE) diagnosis by designing software for the automated classification of colonic polyps. METHODS:Intravenous fluorescein pCLE imaging of colorectal lesions w... AIM:To support probe-based confocal laser endomi-croscopy (pCLE) diagnosis by designing software for the automated classification of colonic polyps. METHODS:Intravenous fluorescein pCLE imaging of colorectal lesions was performed on patients under-going screening and surveillance colonoscopies, followed by polypectomies. All resected specimens were reviewed by a reference gastrointestinal pathologist blinded to pCLE information. Histopathology was used as the criterion standard for the differentiation between neoplastic and non-neoplastic lesions. The pCLE video sequences, recorded for each polyp, were analyzed off-line by 2 expert endoscopists who were blinded to the endoscopic characteristics and histopathology. These pCLE videos, along with their histopathology diagnosis, were used to train the automated classification software which is a content-based image retrieval technique followed by k-nearest neighbor classification. The performance of the off-line diagnosis of pCLE videos established by the 2 expert endoscopists was compared with that of automated pCLE software classification. All evaluations were performed using leave-one-patient- out cross-validation to avoid bias. RESULTS:Colorectal lesions (135) were imaged in 71 patients. Based on histopathology, 93 of these 135 lesions were neoplastic and 42 were non-neoplastic. The study found no statistical significance for the difference between the performance of automated pCLE software classification (accuracy 89.6%, sensitivity 92.5%, specificity 83.3%, using leave-one-patient-out cross-validation) and the performance of the off-line diagnosis of pCLE videos established by the 2 expert endoscopists (accuracy 89.6%, sensitivity 91.4%, specificity 85.7%). There was very low power (< 6%) to detect the observed differences. The 95% confidence intervals for equivalence testing were:-0.073 to 0.073 for accuracy, -0.068 to 0.089 for sensitivity and -0.18 to 0.13 for specificity. The classification software proposed in this study is not a "black box" but an informative tool based on the query by example model that produces, as intermediate results, visually similar annotated videos that are directly interpretable by the endoscopist. CONCLUSION:The proposed software for automated classification of pCLE videos of colonic polyps achieves high performance, comparable to that of off-line diagnosis of pCLE videos established by expert endoscopists. 展开更多
关键词 Colorectal neoplasia computer-aided diag-nosis Content-based image retrieval Nearest neigh-bor classification software Probe-based confocal laserendomicroscopy
下载PDF
Convolutional Neural Network for Histopathological Osteosarcoma Image Classification 被引量:1
2
作者 Imran Ahmed Humaira Sardar +3 位作者 Hanan Aljuaid Fakhri Alam Khan Muhammad Nawaz Adnan Awais 《Computers, Materials & Continua》 SCIE EI 2021年第12期3365-3381,共17页
Osteosarcoma is one of the most widespread causes of bone cancer globally and has a high mortality rate.Early diagnosis may increase the chances of treatment and survival however the process is time-consuming(reliabil... Osteosarcoma is one of the most widespread causes of bone cancer globally and has a high mortality rate.Early diagnosis may increase the chances of treatment and survival however the process is time-consuming(reliability and complexity involved to extract the hand-crafted features)and largely depends on pathologists’experience.Convolutional Neural Network(CNN—an end-to-end model)is known to be an alternative to overcome the aforesaid problems.Therefore,this work proposes a compact CNN architecture that has been rigorously explored on a Small Osteosarcoma histology Image Dataaseet(a high-class imbalanced dataset).Though,during training,class-imbalanced data can negatively affect the performance of CNN.Therefore,an oversampling technique has been proposed to overcome the aforesaid issue and improve generalization performance.In this process,a hierarchical CNN model is designed,in which the former model is non-regularized(due to dense architecture)and the later one is regularized,specifically designed for small histopathology images.Moreover,the regularized model is integrated with CNN’s basic architecture to reduce overfitting.Experimental results demonstrate that oversampling might be an effective way to address the imbalanced class problem during training.The training and testing accuracies of the non-regularized CNN model are 98%&78%with an imbalanced dataset and 96%&81%with a balanced dataset,respectively.The regularized CNN model training and testing accuracies are 84%&75%for an imbalanced dataset and 87%&86%for a balanced dataset. 展开更多
关键词 Convolutional neural network histopathological image classification OSTEOSARCOMA computer-aided diagnosis
下载PDF
Automated Colonic Polyp Detection and Classification Enabled Northern Goshawk Optimization with Deep Learning
3
作者 Mohammed Jasim Mohammed Jasim Bzar Khidir Hussan +1 位作者 Subhi R.M.Zeebaree Zainab Salih Ageed 《Computers, Materials & Continua》 SCIE EI 2023年第5期3677-3693,共17页
The major mortality factor relevant to the intestinal tract is the growth of tumorous cells(polyps)in various parts.More specifically,colonic polyps have a high rate and are recognized as a precursor of colon cancer g... The major mortality factor relevant to the intestinal tract is the growth of tumorous cells(polyps)in various parts.More specifically,colonic polyps have a high rate and are recognized as a precursor of colon cancer growth.Endoscopy is the conventional technique for detecting colon polyps,and considerable research has proved that automated diagnosis of image regions that might have polyps within the colon might be used to help experts for decreasing the polyp miss rate.The automated diagnosis of polyps in a computer-aided diagnosis(CAD)method is implemented using statistical analysis.Nowadays,Deep Learning,particularly throughConvolution Neural networks(CNN),is broadly employed to allowthe extraction of representative features.This manuscript devises a new Northern Goshawk Optimization with Transfer Learning Model for Colonic Polyp Detection and Classification(NGOTL-CPDC)model.The NGOTL-CPDC technique aims to investigate endoscopic images for automated colonic polyp detection.To accomplish this,the NGOTL-CPDC technique comprises of adaptive bilateral filtering(ABF)technique as a noise removal process and image pre-processing step.Besides,the NGOTL-CPDC model applies the Faster SqueezeNet model for feature extraction purposes in which the hyperparameter tuning process is performed using the NGO optimizer.Finally,the fuzzy Hopfield neural network(FHNN)method can be employed for colonic poly detection and classification.A widespread simulation analysis is carried out to ensure the improved outcomes of the NGOTL-CPDC model.The comparison study demonstrates the enhancements of the NGOTL-CPDC model on the colonic polyp classification process on medical test images. 展开更多
关键词 Biomedical imaging artificial intelligence colonic polyp classification medical image classification computer-aided diagnosis
下载PDF
An Optimal Deep Learning Based Computer-Aided Diagnosis System for Diabetic Retinopathy
4
作者 Phong Thanh Nguyen Vy Dang Bich Huynh +3 位作者 Khoa Dang Vo Phuong Thanh Phan Eunmok Yang Gyanendra Prasad Joshi 《Computers, Materials & Continua》 SCIE EI 2021年第3期2815-2830,共16页
Diabetic Retinopathy(DR)is a significant blinding disease that poses serious threat to human vision rapidly.Classification and severity grading of DR are difficult processes to accomplish.Traditionally,it depends on o... Diabetic Retinopathy(DR)is a significant blinding disease that poses serious threat to human vision rapidly.Classification and severity grading of DR are difficult processes to accomplish.Traditionally,it depends on ophthalmoscopically-visible symptoms of growing severity,which is then ranked in a stepwise scale from no retinopathy to various levels of DR severity.This paper presents an ensemble of Orthogonal Learning Particle Swarm Optimization(OPSO)algorithm-based Convolutional Neural Network(CNN)Model EOPSO-CNN in order to perform DR detection and grading.The proposed EOPSO-CNN model involves three main processes such as preprocessing,feature extraction,and classification.The proposed model initially involves preprocessing stage which removes the presence of noise in the input image.Then,the watershed algorithm is applied to segment the preprocessed images.Followed by,feature extraction takes place by leveraging EOPSO-CNN model.Finally,the extracted feature vectors are provided to a Decision Tree(DT)classifier to classify the DR images.The study experiments were carried out using Messidor DR Dataset and the results showed an extraordinary performance by the proposed method over compared methods in a considerable way.The simulation outcome offered the maximum classification with accuracy,sensitivity,and specificity values being 98.47%,96.43%,and 99.02%respectively. 展开更多
关键词 Diabetic retinopathy convolutional neural network classification image processing computer-aided diagnosis
下载PDF
Hyperparameter Tuned Deep Hybrid Denoising Autoencoder Breast Cancer Classification on Digital Mammograms
5
作者 Manar Ahmed Hamza 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2879-2895,共17页
Breast Cancer(BC)is considered the most commonly scrutinized can-cer in women worldwide,affecting one in eight women in a lifetime.Mammogra-phy screening becomes one such standard method that is helpful in identifying... Breast Cancer(BC)is considered the most commonly scrutinized can-cer in women worldwide,affecting one in eight women in a lifetime.Mammogra-phy screening becomes one such standard method that is helpful in identifying suspicious masses’malignancy of BC at an initial level.However,the prior iden-tification of masses in mammograms was still challenging for extremely dense and dense breast categories and needs an effective and automatic mechanisms for helping radiotherapists in diagnosis.Deep learning(DL)techniques were broadly utilized for medical imaging applications,particularly breast mass classi-fication.The advancements in the DL field paved the way for highly intellectual and self-reliant computer-aided diagnosis(CAD)systems since the learning cap-ability of Machine Learning(ML)techniques was constantly improving.This paper presents a new Hyperparameter Tuned Deep Hybrid Denoising Autoenco-der Breast Cancer Classification(HTDHDAE-BCC)on Digital Mammograms.The presented HTDHDAE-BCC model examines the mammogram images for the identification of BC.In the HTDHDAE-BCC model,the initial stage of image preprocessing is carried out using an average median filter.In addition,the deep convolutional neural network-based Inception v4 model is employed to generate feature vectors.The parameter tuning process uses the binary spider monkey opti-mization(BSMO)algorithm.The HTDHDAE-BCC model exploits chameleon swarm optimization(CSO)with the DHDAE model for BC classification.The experimental analysis of the HTDHDAE-BCC model is performed using the MIAS database.The experimental outcomes demonstrate the betterments of the HTDHDAE-BCC model over other recent approaches. 展开更多
关键词 Digital mammograms breast cancer classification computer-aided diagnosis deep learning metaheuristics
下载PDF
Computerized Scheme for Histological Classification of Masses with Architectural Distortions in Ultrasonographic Images
6
作者 Akiyoshi Hizukuri Ryohei Nakayama +2 位作者 Emi Honda Yumi Kashikura Tomoko Ogawa 《Journal of Biomedical Science and Engineering》 2016年第8期399-409,共11页
Architectural distortion is an important ultrasonographic indicator of breast cancer. However, it is difficult for clinicians to determine whether a given lesion is malignant because such distortions can be subtle in ... Architectural distortion is an important ultrasonographic indicator of breast cancer. However, it is difficult for clinicians to determine whether a given lesion is malignant because such distortions can be subtle in ultrasonographic images. In this paper, we report on a study to develop a computerized scheme for the histological classification of masses with architectural distortions as a differential diagnosis aid. Our database consisted of 72 ultrasonographic images obtained from 47 patients whose masses had architectural distortions. This included 51 malignant (35 invasive and 16 non-invasive carcinomas) and 21 benign masses. In the proposed method, the location of the masses and the area occupied by them were first determined by an experienced clinician. Fourteen objective features concerning masses with architectural distortions were then extracted automatically by taking into account subjective features commonly used by experienced clinicians to describe such masses. The k-nearest neighbors (k-NN) rule was finally used to distinguish three histological classifications. The proposed method yielded classification accuracy values of 91.4% (32/35) for invasive carcinoma, 75.0% (12/16) for noninvasive carcinoma, and 85.7% (18/21) for benign mass, respectively. The sensitivity and specificity values were 92.2% (47/51) and 85.7% (18/21), respectively. The positive predictive values (PPV) were 88.9% (32/36) for invasive carcinoma and 85.7% (12/14) for noninvasive carcinoma whereas the negative predictive values (NPV) were 81.8% (18/22) for benign mass. Thus, the proposed method can help the differential diagnosis of masses with architectural distortions in ultrasonographic images. 展开更多
关键词 computer-aided Diagnosis Architectural Distortion MASS Histological classification Ultrasonographic Image
下载PDF
Computer-aided differential diagnosis system for Alzheimer’s disease based on machine learning with functional and morphological image features in magnetic resonance imaging
7
作者 Yasuo Yamashita Hidetaka Arimura +7 位作者 Takashi Yoshiura Chiaki Tokunaga Ohara Tomoyuki Koji Kobayashi Yasuhiko Nakamura Nobuyoshi Ohya Hiroshi Honda Fukai Toyofuku 《Journal of Biomedical Science and Engineering》 2013年第11期1090-1098,共9页
Alzheimer’s disease (AD) is a dementing disorder and one of the major public health problems in countries with greater longevity. The cerebral cortical thickness and cerebral blood flow (CBF), which are considered as... Alzheimer’s disease (AD) is a dementing disorder and one of the major public health problems in countries with greater longevity. The cerebral cortical thickness and cerebral blood flow (CBF), which are considered as morphological and functional image features, respectively, could be decreased in specific cerebral regions of patients with dementia of Alzheimer type. Therefore, the aim of this study was to develop a computer-aided classification system for AD patients based on machine learning with the morphological and functional image features derived from a magnetic resonance (MR) imaging system. The cortical thicknesses in ten cerebral regions were derived as morphological features by using gradient vector trajectories in fuzzy membership images. Functional CBF maps were measured with an arterial spin labeling technique, and ten regional CBF values were obtained by registration between the CBF map and Talairach atlas using an affine transformation and a free form deformation. We applied two systems based on an arterial neural network (ANN) and a support vector machine (SVM), which were trained with 4 morphological and 6 functional image features, to 15 AD patients and 15 clinically normal (CN) subjects for classification of AD. The area under the receiver operating characteristic curve (AUC) values for the two systems based on the ANN and SVM with both image?features were 0.901 and 0.915, respectively. The AUC values for the ANN-and SVM-based systems with the morphological features were 0.710 and 0.660, respectively, and those with the functional features were 0.878 and 0.903, respectively. Our preliminary results suggest that the proposed method may have potential for assisting radiologists in the differential diagnosis of AD patients by using morphological and functional image features. 展开更多
关键词 computer-aided classification (CAD) Alzheimer’s Disease Magnetic Resonance Imaging (MRI) Arterial Spin Labeling (ASL) Fuzzy MEMBERSHIP Image Cortical Thickness Cerebral Blood Flow (CBF)
下载PDF
Deep learning with convolutional neural networks for identification of liver masses and hepatocellular carcinoma: A systematic review 被引量:11
8
作者 Samy A Azer 《World Journal of Gastrointestinal Oncology》 SCIE CAS 2019年第12期1218-1230,共13页
BACKGROUND Artificial intelligence,such as convolutional neural networks(CNNs),has been used in the interpretation of images and the diagnosis of hepatocellular cancer(HCC)and liver masses.CNN,a machine-learning algor... BACKGROUND Artificial intelligence,such as convolutional neural networks(CNNs),has been used in the interpretation of images and the diagnosis of hepatocellular cancer(HCC)and liver masses.CNN,a machine-learning algorithm similar to deep learning,has demonstrated its capability to recognise specific features that can detect pathological lesions.AIM To assess the use of CNNs in examining HCC and liver masses images in the diagnosis of cancer and evaluating the accuracy level of CNNs and their performance.METHODS The databases PubMed,EMBASE,and the Web of Science and research books were systematically searched using related keywords.Studies analysing pathological anatomy,cellular,and radiological images on HCC or liver masses using CNNs were identified according to the study protocol to detect cancer,differentiating cancer from other lesions,or staging the lesion.The data were extracted as per a predefined extraction.The accuracy level and performance of the CNNs in detecting cancer or early stages of cancer were analysed.The primary outcomes of the study were analysing the type of cancer or liver mass and identifying the type of images that showed optimum accuracy in cancer detection.RESULTS A total of 11 studies that met the selection criteria and were consistent with the aims of the study were identified.The studies demonstrated the ability to differentiate liver masses or differentiate HCC from other lesions(n=6),HCC from cirrhosis or development of new tumours(n=3),and HCC nuclei grading or segmentation(n=2).The CNNs showed satisfactory levels of accuracy.The studies aimed at detecting lesions(n=4),classification(n=5),and segmentation(n=2).Several methods were used to assess the accuracy of CNN models used.CONCLUSION The role of CNNs in analysing images and as tools in early detection of HCC or liver masses has been demonstrated in these studies.While a few limitations have been identified in these studies,overall there was an optimal level of accuracy of the CNNs used in segmentation and classification of liver cancers images. 展开更多
关键词 Deep learning Convolutional neural network HEPATOCELLULAR CARCINOMA LIVER MASSES LIVER cancer Medical imaging classification Segmentation Artificial INTELLIGENCE computer-aided diagnosis
下载PDF
Feature extraction based on empirical mode decomposition for automatic mass classification of mammogram images 被引量:3
9
作者 Vaijayanthi Nagarajan Elizabeth Caroline Britto Senthilvel Murugan Veeraputhiran 《Medicine in Novel Technology and Devices》 2019年第1期8-21,共14页
Breast cancer is one of the major health problems that leads to early mortality in women.To aid the radiologists,computer aided diagnosis provides a second opinion for the detection and classification of breast cancer... Breast cancer is one of the major health problems that leads to early mortality in women.To aid the radiologists,computer aided diagnosis provides a second opinion for the detection and classification of breast cancer.In this paper,two texture feature extraction methods using Empirical Mode Decomposition(EMD)have been proposed to classify the masses in mammogram images into benign or malignant.The first feature extraction method is based on Bi-dimensional Empirical Mode Decomposition(BEMD).On performing BEMD on Region of Interest(ROI)of mammogram image,the ROI is decomposed into a set of different frequency components called Bi-dimensional Intrinsic Mode Functions(BIMFs).Gray Level Co-occurrence Matrix(GLCM)and Gray Level Run Length Matrix(GLRM)features are extracted from these BIMFs and are given as input to the classifier for classification into benign or malignant.Due to the mode mixing problem that exists in BEMD,BIMFs obtained from BEMD are less orthogonal to each other.To overcome this drawback,the second feature extraction method called Modified Bidimensional Empirical Mode Decomposition(MBEMD)is proposed.The BIMFs are extracted by employing the proposed MBEMD on mammogram ROI.Features are extracted in a similar way as BEMD method.Support Vector Machine(SVM)and Linear Discriminant Analysis(LDA)classifiers are used for the classification of mammogram mass.The classification accuracy of 88.8%,96.2%and Area Under the Curve(AUC)of Receiver Operating Characteristics(ROC)of 0.9,0.96 are obtained with SVM classifier for BEMD,proposed MBEMD based features respectively.The results show that the proposed method yields consistent performance when applied across different databases. 展开更多
关键词 Image processing Image analysis Image classification Feature extraction MAMMOGRAPHY computer-aided diagnosis Medical imaging Empirical mode decomposition
原文传递
Osteoporotic Vertebral Fracture Classification in X-rays Based on a Multi-modal Semantic Consistency Network
10
作者 Yuzhao Wang Tian Bai +1 位作者 Tong Li Lan Huang 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第6期1816-1829,共14页
Osteoporotic Vertebral Fracture(OVFs)is a common lumbar spine disorder that severely affects the health of patients.With a clear bone blocks boundary,CT images have gained obvious advantages in OVFs diagnosis.Compared... Osteoporotic Vertebral Fracture(OVFs)is a common lumbar spine disorder that severely affects the health of patients.With a clear bone blocks boundary,CT images have gained obvious advantages in OVFs diagnosis.Compared with CT images,X-rays are faster and more inexpensive but often leads to misdiagnosis and miss-diagnosis because of the overlapping shadows.Considering how to transfer CT imaging advantages to achieve OVFs classification in X-rays is meaningful.For this purpose,we propose a multi-modal semantic consistency network which could do well X-ray OVFs classification by transferring CT semantic consistency features.Different from existing methods,we introduce a feature-level mix-up module to get the domain soft labels which helps the network reduce the domain offsets between CT and X-ray.In the meanwhile,the network uses a self-rotation pretext task on both CT and X-ray domains to enhance learning the high-level semantic invariant features.We employ five evaluation metrics to compare the proposed method with the state-of-the-art methods.The final results show that our method improves the best value of AUC from 86.32 to 92.16%.The results indicate that multi-modal semantic consistency method could use CT imaging features to improve osteoporotic vertebral fracture classification in X-rays effectively. 展开更多
关键词 Osteoporotic vertebral fracture classification Cross-modality Unsupervised domain adaptation Transfer learning Convolutional neural network computer-aided diagnosis
原文传递
A leaf image localization based algorithm for different crops disease classification
11
作者 Yashwant Kurmi Suchi Gangwar 《Information Processing in Agriculture》 EI 2022年第3期456-474,共19页
Agricultural crop production is a major contributing element to any country’s economy.To maintain the economic growth of any country plants disease detection is a leading factor in agriculture.The contribution of the... Agricultural crop production is a major contributing element to any country’s economy.To maintain the economic growth of any country plants disease detection is a leading factor in agriculture.The contribution of the proposed algorithm is to optimize the extracted infor-mation from the available resources for the betterment of the result without any additional complexity.The proposed technique basically localizes the leaf region prior to the image classification into healthy and diseased.The novelty of this work is to fuse the information extracted from the available resources and optimize it to enhance the expected outcome.The leaf colors are analyzed using color transformation for the seed region identification.The mapping of a low-dimensional RGB color image into L*a*b color space provides an expansion of the spectral range.The neighboring pixels-based leaf region growing is applied on the initial seeds.In order to refine the leaf boundary and the disease-affected areas,we employed a random sample consensus(RANSAC)for suitable curve fitting.The feature sets using bag of visual words,Fisher vectors,and handcrafted features are extracted followed by classification using logistic regression,multilayer perceptron model,and support vector machine.The performance of the proposal is analyzed through PlantVillage datasets of apple,bell pepper,cherry,corn,grape,potato,and tomato.The simulation-based analysis of the proposed contextualization-based image categorization process outperforms as compared with the state of arts.The proposed approach provides average accuracy and area under the curve of 0.932 and 0.903,respectively. 展开更多
关键词 Image segmentation and classification computer-aided diagnosis Crop’s leaf image Tomato leaf image localization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部