In 6G era,service forms in which computing power acts as the core will be ubiquitous in the network.At the same time,the collaboration among edge computing,cloud computing and network is needed to support edge computi...In 6G era,service forms in which computing power acts as the core will be ubiquitous in the network.At the same time,the collaboration among edge computing,cloud computing and network is needed to support edge computing service with strong demand for computing power,so as to realize the optimization of resource utilization.Based on this,the article discusses the research background,key techniques and main application scenarios of computing power network.Through the demonstration,it can be concluded that the technical solution of computing power network can effectively meet the multi-level deployment and flexible scheduling needs of the future 6G business for computing,storage and network,and adapt to the integration needs of computing power and network in various scenarios,such as user oriented,government enterprise oriented,computing power open and so on.展开更多
With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these...With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these distributed computing power resources due to computing power island effect.To overcome these problems and improve network efficiency,a new network computing paradigm is proposed,i.e.,Computing Power Network(CPN).Computing power network can connect ubiquitous and heterogenous computing power resources through networking to realize computing power scheduling flexibly.In this survey,we make an exhaustive review on the state-of-the-art research efforts on computing power network.We first give an overview of computing power network,including definition,architecture,and advantages.Next,a comprehensive elaboration of issues on computing power modeling,information awareness and announcement,resource allocation,network forwarding,computing power transaction platform and resource orchestration platform is presented.The computing power network testbed is built and evaluated.The applications and use cases in computing power network are discussed.Then,the key enabling technologies for computing power network are introduced.Finally,open challenges and future research directions are presented as well.展开更多
Fog computing is considered as a solution to accommodate the emergence of booming requirements from a large variety of resource-limited Internet of Things(IoT)devices.To ensure the security of private data,in this pap...Fog computing is considered as a solution to accommodate the emergence of booming requirements from a large variety of resource-limited Internet of Things(IoT)devices.To ensure the security of private data,in this paper,we introduce a blockchain-enabled three-layer device-fog-cloud heterogeneous network.A reputation model is proposed to update the credibility of the fog nodes(FN),which is used to select blockchain nodes(BN)from FNs to participate in the consensus process.According to the Rivest-Shamir-Adleman(RSA)encryption algorithm applied to the blockchain system,FNs could verify the identity of the node through its public key to avoid malicious attacks.Additionally,to reduce the computation complexity of the consensus algorithms and the network overhead,we propose a dynamic offloading and resource allocation(DORA)algorithm and a reputation-based democratic byzantine fault tolerant(R-DBFT)algorithm to optimize the offloading decisions and decrease the number of BNs in the consensus algorithm while ensuring the network security.Simulation results demonstrate that the proposed algorithm could efficiently reduce the network overhead,and obtain a considerable performance improvement compared to the related algorithms in the previous literature.展开更多
As an open network architecture,Wireless Computing PowerNetworks(WCPN)pose newchallenges for achieving efficient and secure resource management in networks,because of issues such as insecure communication channels and...As an open network architecture,Wireless Computing PowerNetworks(WCPN)pose newchallenges for achieving efficient and secure resource management in networks,because of issues such as insecure communication channels and untrusted device terminals.Blockchain,as a shared,immutable distributed ledger,provides a secure resource management solution for WCPN.However,integrating blockchain into WCPN faces challenges like device heterogeneity,monitoring communication states,and dynamic network nature.Whereas Digital Twins(DT)can accurately maintain digital models of physical entities through real-time data updates and self-learning,enabling continuous optimization of WCPN,improving synchronization performance,ensuring real-time accuracy,and supporting smooth operation of WCPN services.In this paper,we propose a DT for blockchain-empowered WCPN architecture that guarantees real-time data transmission between physical entities and digital models.We adopt an enumeration-based optimal placement algorithm(EOPA)and an improved simulated annealing-based near-optimal placement algorithm(ISAPA)to achieve minimum average DT synchronization latency under the constraint of DT error.Numerical results show that the proposed solution in this paper outperforms benchmarks in terms of average synchronization latency.展开更多
The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility ...The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility of users as well as satisfy the required quality of service(QoS) such as the end-to-end response latency experienced by each user. We formulate the problem of joint resource allocation as a combinatorial optimization problem. Three evolutionary approaches are considered to solve the problem: genetic algorithm(GA), ant colony optimization with genetic algorithm(ACO-GA), and quantum genetic algorithm(QGA). To decrease the time complexity, we propose a mapping process between the resource allocation matrix and the chromosome of GA, ACO-GA, and QGA, search the available radio and cloud resource pairs based on the resource availability matrixes for ACOGA, and encode the difference value between the allocated resources and the minimum resource requirement for QGA. Extensive simulation results show that our proposed methods greatly outperform the existing algorithms in terms of running time, the accuracy of final results, the total utility, resource utilization and the end-to-end response latency guaranteeing.展开更多
This study utilized a neuronal compartment model and NEURON software to study the effects of external light stimulation on retinal photoreceptors and spike patterns of neurons in a retinal network Following light stim...This study utilized a neuronal compartment model and NEURON software to study the effects of external light stimulation on retinal photoreceptors and spike patterns of neurons in a retinal network Following light stimulation of different shapes and sizes, changes in the spike features of ganglion cells indicated that different shapes of light stimulation elicited different retinal responses. By manipulating the shape of light stimulation, we investigated the effects of the large number of electrical synapses existing between retinal neurons. Model simulation and analysis suggested that interplexiform cells play an important role in visual signal information processing in the retina, and the findings indicated that our constructed retinal network model was reliable and feasible. In addition, the simulation results demonstrated that ganglion cells exhibited a variety of spike patterns under different light stimulation sizes and different stimulation shapes, which reflect the functions of the retina in signal transmission and processing.展开更多
The next-generation optical network is a service oriented network,which could be delivered by utilizing the generalized multiprotocol label switching(GMPLS) based control plane to realize lots of intelligent features ...The next-generation optical network is a service oriented network,which could be delivered by utilizing the generalized multiprotocol label switching(GMPLS) based control plane to realize lots of intelligent features such as rapid provisioning,automated protection and restoration(P&R),efficient resource allocation,and support for different quality of service(QoS) requirements.In this paper,we propose a novel stateful PCE-cloud(SPC)based architecture of GMPLS optical networks for cloud services.The cloud computing technologies(e.g.virtualization and parallel computing) are applied to the construction of SPC for improving the reliability and maximizing resource utilization.The functions of SPC and GMPLS based control plane are expanded according to the features of cloud services for different QoS requirements.The architecture and detailed description of the components of SPC are provided.Different potential cooperation relationships between public stateful PCE cloud(PSPC) and region stateful PCE cloud(RSPC) are investigated.Moreover,we present the policy-enabled and constraint-based routing scheme base on the cooperation of PSPC and RSPC.Simulation results for verifying the performance of routing and control plane reliability are analyzed.展开更多
In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retra...In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retransmitted packet.Therefore,it is important to develop a method to realise efficient broadcast transmission.Network coding is a promising technique in this scenario.However,none of the proposed schemes achieves both high transmission efficiency and low computational complexity simultaneously so far.To address this problem,a novel Efficient Opportunistic Network Coding Retransmission(EONCR)scheme is proposed in this paper.This scheme employs a new packet scheduling algorithm which uses a Packet Distribution Matrix(PDM)directly to select the coded packets.The analysis and simulation results indicate that transmission efficiency of EONCR is over 0.1,more than the schemes proposed previously in some simulation conditions,and the computational overhead is reduced substantially.Hence,it has great application prospects in wireless broadcast networks,especially energyand bandwidth-limited systems such as satellite broadcast systems and Planetary Networks(PNs).展开更多
Quality of Service(QoS)in the 6G application scenario is an important issue with the premise of the massive data transmission.Edge caching based on the fog computing network is considered as a potential solution to ef...Quality of Service(QoS)in the 6G application scenario is an important issue with the premise of the massive data transmission.Edge caching based on the fog computing network is considered as a potential solution to effectively reduce the content fetch delay for latency-sensitive services of Internet of Things(IoT)devices.Considering the time-varying scenario,the machine learning techniques could further reduce the content fetch delay by optimizing the caching decisions.In this paper,to minimize the content fetch delay and ensure the QoS of the network,a Device-to-Device(D2D)assisted fog computing network architecture is introduced,which supports federated learning and QoS-aware caching decisions based on time-varying user preferences.To release the network congestion and the risk of the user privacy leakage,federated learning,is enabled in the D2D-assisted fog computing network.Specifically,it has been observed that federated learning yields suboptimal results according to the Non-Independent Identical Distribution(Non-IID)of local users data.To address this issue,a distributed cluster-based user preference estimation algorithm is proposed to optimize the content caching placement,improve the cache hit rate,the content fetch delay and the convergence rate,which can effectively mitigate the impact of the Non-IID data set by clustering.The simulation results show that the proposed algorithm provides a considerable performance improvement with better learning results compared with the existing algorithms.展开更多
To describe the dynamic semantics for the network computing, the concept on process is presented Based on the semantic model with variable, resource and relation. Accordingly, the formal definition of process and the ...To describe the dynamic semantics for the network computing, the concept on process is presented Based on the semantic model with variable, resource and relation. Accordingly, the formal definition of process and the mapping rules from the specification of Petri nets extension to process are discussed in detail respectively. Based on the collective concepts of process, the specification of dynamic semantics also is constructed as a net system. Finally, to illustrate process intuitively, an example is specified completely.展开更多
Aiming at the factory with high-complex and multi-terminal in the industrial Internet of things(IIoT),a hierarchical edge networking collaboration(HENC)framework based on the cloud-edge collaboration and computing fir...Aiming at the factory with high-complex and multi-terminal in the industrial Internet of things(IIoT),a hierarchical edge networking collaboration(HENC)framework based on the cloud-edge collaboration and computing first networking(CFN)is proposed to improve the capability of task processing with fixed computing resources on the edge effectively.To optimize the delay and energy consumption in HENC,a multi-objective optimization(MOO)problem is formulated.Furthermore,to improve the efficiency and reliability of the system,a resource prediction model based on ridge regression(RR)is proposed to forecast the task size of the next time slot,and an emergency-aware(EA)computing resource allocation algorithm is proposed to reallocate tasks in edge CFN.Based on the simulation result,the EA algorithm is superior to the greedy resource allocation in time delay,energy consumption,quality of service(QoS)especially with limited computing resources.展开更多
High-speed large-bandwidth networks and growth in rich internet applications has brought unprecedented pressure to bear on telecom operators. Consequently, operators need to play to the advantages of their networks, m...High-speed large-bandwidth networks and growth in rich internet applications has brought unprecedented pressure to bear on telecom operators. Consequently, operators need to play to the advantages of their networks, make good use of their large customer bases, and expand their business resources in service, platform, and interface. Network and customer resources should be integrated in order to create new business ecosystems. This paper describes new threats and challenges facing telecom operators and analyzes how leading operators are handling transformation in terms of operations and business model. A new concept called distributed intelligent open system (DIOS)—a public computing communication network—is proposed. The architecture and key technologies of DIOS is discussed in detail.展开更多
The publication of Tsinghua Science and Technology was started in 1996. Since then, it has been an international academic journal sponsored by Tsinghua University and published bimonthly. This journal aims at presenti...The publication of Tsinghua Science and Technology was started in 1996. Since then, it has been an international academic journal sponsored by Tsinghua University and published bimonthly. This journal aims at presenting the state-of-art scientific achievements in computer science, and other IT fields, and is currently indexed by Ei and other abstracting indices. From year 2013, the journal will be available for open access through IEEE Xplore Digital Library. This year's special section on Wireless Computing and Networking of Tsinghua Science and Technology is devoted to gather and present new research that address the challenges in the broad areas of Wireless Networks, Sensor Networks, Wireless Computing and Communication. While Wireless Networks have great potential to provide heterogeneous access and services for ubiquitous users, the demanding communication environment of wireless networks imposes challenges to many interesting research topics, such as channel estimation, communication protocol design, resource management, system design and so on. In Wireless Network research, it is unavoidable to wrestle unique problems such as non-uniform spectrum allocation, various radio resource management policies, economic concerns, the scarcity of radio resources, and user mobility. This Special Section therefore aims to publish high quality, original, unpublished research papers in the broad area of Wireless Computing and Networking, and thus presents a platform for scientists and scholars to share their observations and research results in the field. Specific topics for this special section include but are not limited to:展开更多
Fueled by the explosive growth of ultra-low-latency and real-time applications with specific computing and network performance requirements,the computing force network(CFN)has become a hot research subject.The primary...Fueled by the explosive growth of ultra-low-latency and real-time applications with specific computing and network performance requirements,the computing force network(CFN)has become a hot research subject.The primary CFN challenge is to leverage network resources and computing resources.Although recent advances in deep reinforcement learning(DRL)have brought significant improvement in network optimization,these methods still suffer from topology changes and fail to generalize for those topologies not seen in training.This paper proposes a graph neural network(GNN)based DRL framework to accommodate network trafic and computing resources jointly and efficiently.By taking advantage of the generalization capability in GNN,the proposed method can operate over variable topologies and obtain higher performance than the other DRL methods.展开更多
Under the development of computing and network convergence,considering the computing and network resources of multiple providers as a whole in a computing force network(CFN)has gradually become a new trend.However,sin...Under the development of computing and network convergence,considering the computing and network resources of multiple providers as a whole in a computing force network(CFN)has gradually become a new trend.However,since each computing and network resource provider(CNRP)considers only its own interest and competes with other CNRPs,introducing multiple CNRPs will result in a lack of trust and difficulty in unified scheduling.In addition,concurrent users have different requirements,so there is an urgent need to study how to optimally match users and CNRPs on a many-to-many basis,to improve user satisfaction and ensure the utilization of limited resources.In this paper,we adopt a reputation model based on the beta distribution function to measure the credibility of CNRPs and propose a performance-based reputation update model.Then,we formalize the problem into a constrained multi-objective optimization problem and find feasible solutions using a modified fast and elitist non-dominated sorting genetic algorithm(NSGA-II).We conduct extensive simulations to evaluate the proposed algorithm.Simulation results demonstrate that the proposed model and the problem formulation are valid,and the NSGA-II is effective and can find the Pareto set of CFN,which increases user satisfaction and resource utilization.Moreover,a set of solutions provided by the Pareto set give us more choices of the many-to-many matching of users and CNRPs according to the actual situation.展开更多
Federated learning effectively addresses issues such as data privacy by collaborating across participating devices to train global models.However,factors such as network topology and computing power of devices can aff...Federated learning effectively addresses issues such as data privacy by collaborating across participating devices to train global models.However,factors such as network topology and computing power of devices can affect its training or communication process in complex network environments.Computing and network convergence(CNC)of sixth-generation(6G)networks,a new network architecture and paradigm with computing-measurable,perceptible,distributable,dispatchable,and manageable capabilities,can effectively support federated learning training and improve its communication efficiency.By guiding the participating devices'training in federated learning based on business requirements,resource load,network conditions,and computing power of devices,CNC can reach this goal.In this paper,to improve the communication eficiency of federated learning in complex networks,we study the communication eficiency optimization methods of federated learning for CNC of 6G networks that give decisions on the training process for different network conditions and computing power of participating devices.The simulations address two architectures that exist for devices in federated learning and arrange devices to participate in training based on arithmetic power while achieving optimization of communication efficiency in the process of transferring model parameters.The results show that the methods we proposed can cope well with complex network situations,effectively balance the delay distribution of participating devices for local training,improve the communication eficiency during the transfer of model parameters,and improve the resource utilization in the network.展开更多
Open Editor is an Object-Oriented multimedia editor,which runs in the network distributed environment.To add audio media into multimedia application,an audio server based on Client/Server paradigm is designed.In this ...Open Editor is an Object-Oriented multimedia editor,which runs in the network distributed environment.To add audio media into multimedia application,an audio server based on Client/Server paradigm is designed.In this paper,we first give an overview of Open Editor,then an in-depth discussion of the implementation techniques of audio functions is presented.展开更多
Non-center network computing environments have some unique characteristics, such as instability, heterogeneity, autonomy, distribution and openness, which bring serious issues of security and reliability. This article...Non-center network computing environments have some unique characteristics, such as instability, heterogeneity, autonomy, distribution and openness, which bring serious issues of security and reliability. This article proposes a brand-new credibility protection mechanism for resource sharing and collaboration in non-center network computing environments. First, the three-dimensional hierarchical classified topology (3DHCT) is proposed, which provides a basic framework for realizations of the identity credibility, the behavior credibility and the capability credibility. Next, the agent technology is utilized to construct the credibility protection model. This article also proposes a new comprehensive credibility evaluation algorithm with simple, efficient, quantitative and able to meet the requirements of evaluating behavior credibility and the capability credibility evaluation as well. The Dempster-Shafer theory of evidence and the combination rule are used to achieve the evaluation of the capability credibility. The behavior credibility is evaluated with the current and historical performance of nodes for providers and consumers to realize more accurate prediction. Based on the non-center network computing simulation test platform, simulation is been conducted to test the performance and validity of the proposed algorithms. Experiment and analysis show that the proposed algorithms are suitable for large-scale, dynamic network computing environments, and able to maintain the credibility for networks without relying on central node, make a non-center network gradually evolve into an orderly, stable and reliable computing environment efficiently.展开更多
Objective To investigate the spike activities of cerebellar cortical cells in a computational network model con- structed based on the anatomical structure of cerebellar cortex. Methods and Results The multicompartmen...Objective To investigate the spike activities of cerebellar cortical cells in a computational network model con- structed based on the anatomical structure of cerebellar cortex. Methods and Results The multicompartment model of neuron and NEURON software were used to study the external influences on cerebellar cortical cells. Various potential spike patterns in these cells were obtained. By analyzing the impacts of different incoming stimuli on the potential spike of Purkinje cell, temporal focusing caused by the granule cell-golgi cell feedback inhibitory loop to Purkinje cell and spa- tial focusing caused by the parallel fiber-basket/stellate cell local inhibitory loop to Purkinje cell were discussed. Finally, the motor learning process of rabbit eye blink conditioned reflex was demonstrated in this model. The simulation results showed that when the afferent from climbing fiber existed, rabbit adaptation to eye blinking gradually became stable under the Spike Timing-Dependent Plasticity (STDP) learning rule. Conclusion The constructed cerebellar cortex network is a reliable and feasible model. The model simulation results confirmed the output signal stability of cerebellar cortex after STDP learning and the network can execute the function of spatial and temporal focusing.展开更多
In this paper, an optimum tactic of multi-grid parallel algorithmwith virtual boundary forecast method is disscussed, and a two-stage implementationis presented. The numerical results of solving a non-linear heat tran...In this paper, an optimum tactic of multi-grid parallel algorithmwith virtual boundary forecast method is disscussed, and a two-stage implementationis presented. The numerical results of solving a non-linear heat transfer equationshow that the optimum implementation is much better than the non-optimum one.展开更多
基金This work was supported by the National Key R&D Program of China No.2019YFB1802800.
文摘In 6G era,service forms in which computing power acts as the core will be ubiquitous in the network.At the same time,the collaboration among edge computing,cloud computing and network is needed to support edge computing service with strong demand for computing power,so as to realize the optimization of resource utilization.Based on this,the article discusses the research background,key techniques and main application scenarios of computing power network.Through the demonstration,it can be concluded that the technical solution of computing power network can effectively meet the multi-level deployment and flexible scheduling needs of the future 6G business for computing,storage and network,and adapt to the integration needs of computing power and network in various scenarios,such as user oriented,government enterprise oriented,computing power open and so on.
基金supported by the National Science Foundation of China under Grant 62271062 and 62071063by the Zhijiang Laboratory Open Project Fund 2020LCOAB01。
文摘With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these distributed computing power resources due to computing power island effect.To overcome these problems and improve network efficiency,a new network computing paradigm is proposed,i.e.,Computing Power Network(CPN).Computing power network can connect ubiquitous and heterogenous computing power resources through networking to realize computing power scheduling flexibly.In this survey,we make an exhaustive review on the state-of-the-art research efforts on computing power network.We first give an overview of computing power network,including definition,architecture,and advantages.Next,a comprehensive elaboration of issues on computing power modeling,information awareness and announcement,resource allocation,network forwarding,computing power transaction platform and resource orchestration platform is presented.The computing power network testbed is built and evaluated.The applications and use cases in computing power network are discussed.Then,the key enabling technologies for computing power network are introduced.Finally,open challenges and future research directions are presented as well.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 62371082 and 62001076in part by the National Key R&D Program of China under Grant 2021YFB1714100in part by the Natural Science Foundation of Chongqing under Grant CSTB2023NSCQ-MSX0726 and cstc2020jcyjmsxmX0878.
文摘Fog computing is considered as a solution to accommodate the emergence of booming requirements from a large variety of resource-limited Internet of Things(IoT)devices.To ensure the security of private data,in this paper,we introduce a blockchain-enabled three-layer device-fog-cloud heterogeneous network.A reputation model is proposed to update the credibility of the fog nodes(FN),which is used to select blockchain nodes(BN)from FNs to participate in the consensus process.According to the Rivest-Shamir-Adleman(RSA)encryption algorithm applied to the blockchain system,FNs could verify the identity of the node through its public key to avoid malicious attacks.Additionally,to reduce the computation complexity of the consensus algorithms and the network overhead,we propose a dynamic offloading and resource allocation(DORA)algorithm and a reputation-based democratic byzantine fault tolerant(R-DBFT)algorithm to optimize the offloading decisions and decrease the number of BNs in the consensus algorithm while ensuring the network security.Simulation results demonstrate that the proposed algorithm could efficiently reduce the network overhead,and obtain a considerable performance improvement compared to the related algorithms in the previous literature.
基金supported by the National Natural Science Foundation of China under Grant 62272391in part by the Key Industry Innovation Chain of Shaanxi under Grant 2021ZDLGY05-08.
文摘As an open network architecture,Wireless Computing PowerNetworks(WCPN)pose newchallenges for achieving efficient and secure resource management in networks,because of issues such as insecure communication channels and untrusted device terminals.Blockchain,as a shared,immutable distributed ledger,provides a secure resource management solution for WCPN.However,integrating blockchain into WCPN faces challenges like device heterogeneity,monitoring communication states,and dynamic network nature.Whereas Digital Twins(DT)can accurately maintain digital models of physical entities through real-time data updates and self-learning,enabling continuous optimization of WCPN,improving synchronization performance,ensuring real-time accuracy,and supporting smooth operation of WCPN services.In this paper,we propose a DT for blockchain-empowered WCPN architecture that guarantees real-time data transmission between physical entities and digital models.We adopt an enumeration-based optimal placement algorithm(EOPA)and an improved simulated annealing-based near-optimal placement algorithm(ISAPA)to achieve minimum average DT synchronization latency under the constraint of DT error.Numerical results show that the proposed solution in this paper outperforms benchmarks in terms of average synchronization latency.
基金supported by the National Natural Science Foundation of China (No. 61741102, No. 61471164)China Scholarship Council
文摘The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility of users as well as satisfy the required quality of service(QoS) such as the end-to-end response latency experienced by each user. We formulate the problem of joint resource allocation as a combinatorial optimization problem. Three evolutionary approaches are considered to solve the problem: genetic algorithm(GA), ant colony optimization with genetic algorithm(ACO-GA), and quantum genetic algorithm(QGA). To decrease the time complexity, we propose a mapping process between the resource allocation matrix and the chromosome of GA, ACO-GA, and QGA, search the available radio and cloud resource pairs based on the resource availability matrixes for ACOGA, and encode the difference value between the allocated resources and the minimum resource requirement for QGA. Extensive simulation results show that our proposed methods greatly outperform the existing algorithms in terms of running time, the accuracy of final results, the total utility, resource utilization and the end-to-end response latency guaranteeing.
基金the National Natural Science Foundation of China, No. 10872069
文摘This study utilized a neuronal compartment model and NEURON software to study the effects of external light stimulation on retinal photoreceptors and spike patterns of neurons in a retinal network Following light stimulation of different shapes and sizes, changes in the spike features of ganglion cells indicated that different shapes of light stimulation elicited different retinal responses. By manipulating the shape of light stimulation, we investigated the effects of the large number of electrical synapses existing between retinal neurons. Model simulation and analysis suggested that interplexiform cells play an important role in visual signal information processing in the retina, and the findings indicated that our constructed retinal network model was reliable and feasible. In addition, the simulation results demonstrated that ganglion cells exhibited a variety of spike patterns under different light stimulation sizes and different stimulation shapes, which reflect the functions of the retina in signal transmission and processing.
基金supported by National Natural Science Foundation of China(No.61571061)Innovative Research Fund of Beijing University of Posts and Telecommunications (2015RC16)
文摘The next-generation optical network is a service oriented network,which could be delivered by utilizing the generalized multiprotocol label switching(GMPLS) based control plane to realize lots of intelligent features such as rapid provisioning,automated protection and restoration(P&R),efficient resource allocation,and support for different quality of service(QoS) requirements.In this paper,we propose a novel stateful PCE-cloud(SPC)based architecture of GMPLS optical networks for cloud services.The cloud computing technologies(e.g.virtualization and parallel computing) are applied to the construction of SPC for improving the reliability and maximizing resource utilization.The functions of SPC and GMPLS based control plane are expanded according to the features of cloud services for different QoS requirements.The architecture and detailed description of the components of SPC are provided.Different potential cooperation relationships between public stateful PCE cloud(PSPC) and region stateful PCE cloud(RSPC) are investigated.Moreover,we present the policy-enabled and constraint-based routing scheme base on the cooperation of PSPC and RSPC.Simulation results for verifying the performance of routing and control plane reliability are analyzed.
基金supported in part by the National Natural Science Foundation of China under Grant No. 61032004the National High Technical Research and Development Program of China (863 Program) under Grants No. 2012AA121605,No. 2012AA01A503,No.2012AA01A510
文摘In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retransmitted packet.Therefore,it is important to develop a method to realise efficient broadcast transmission.Network coding is a promising technique in this scenario.However,none of the proposed schemes achieves both high transmission efficiency and low computational complexity simultaneously so far.To address this problem,a novel Efficient Opportunistic Network Coding Retransmission(EONCR)scheme is proposed in this paper.This scheme employs a new packet scheduling algorithm which uses a Packet Distribution Matrix(PDM)directly to select the coded packets.The analysis and simulation results indicate that transmission efficiency of EONCR is over 0.1,more than the schemes proposed previously in some simulation conditions,and the computational overhead is reduced substantially.Hence,it has great application prospects in wireless broadcast networks,especially energyand bandwidth-limited systems such as satellite broadcast systems and Planetary Networks(PNs).
基金supported by the National Natural Science Foundation of China(NSFC)(61831002)the European Union Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement No 734798Innovation Project of the Common Key Technology of Chongqing Science and Technology Industry(Grant no.cstc2018jcyjAX0383).
文摘Quality of Service(QoS)in the 6G application scenario is an important issue with the premise of the massive data transmission.Edge caching based on the fog computing network is considered as a potential solution to effectively reduce the content fetch delay for latency-sensitive services of Internet of Things(IoT)devices.Considering the time-varying scenario,the machine learning techniques could further reduce the content fetch delay by optimizing the caching decisions.In this paper,to minimize the content fetch delay and ensure the QoS of the network,a Device-to-Device(D2D)assisted fog computing network architecture is introduced,which supports federated learning and QoS-aware caching decisions based on time-varying user preferences.To release the network congestion and the risk of the user privacy leakage,federated learning,is enabled in the D2D-assisted fog computing network.Specifically,it has been observed that federated learning yields suboptimal results according to the Non-Independent Identical Distribution(Non-IID)of local users data.To address this issue,a distributed cluster-based user preference estimation algorithm is proposed to optimize the content caching placement,improve the cache hit rate,the content fetch delay and the convergence rate,which can effectively mitigate the impact of the Non-IID data set by clustering.The simulation results show that the proposed algorithm provides a considerable performance improvement with better learning results compared with the existing algorithms.
文摘To describe the dynamic semantics for the network computing, the concept on process is presented Based on the semantic model with variable, resource and relation. Accordingly, the formal definition of process and the mapping rules from the specification of Petri nets extension to process are discussed in detail respectively. Based on the collective concepts of process, the specification of dynamic semantics also is constructed as a net system. Finally, to illustrate process intuitively, an example is specified completely.
基金supported by the National Natural Science Foundation of China(61971050)。
文摘Aiming at the factory with high-complex and multi-terminal in the industrial Internet of things(IIoT),a hierarchical edge networking collaboration(HENC)framework based on the cloud-edge collaboration and computing first networking(CFN)is proposed to improve the capability of task processing with fixed computing resources on the edge effectively.To optimize the delay and energy consumption in HENC,a multi-objective optimization(MOO)problem is formulated.Furthermore,to improve the efficiency and reliability of the system,a resource prediction model based on ridge regression(RR)is proposed to forecast the task size of the next time slot,and an emergency-aware(EA)computing resource allocation algorithm is proposed to reallocate tasks in edge CFN.Based on the simulation result,the EA algorithm is superior to the greedy resource allocation in time delay,energy consumption,quality of service(QoS)especially with limited computing resources.
文摘High-speed large-bandwidth networks and growth in rich internet applications has brought unprecedented pressure to bear on telecom operators. Consequently, operators need to play to the advantages of their networks, make good use of their large customer bases, and expand their business resources in service, platform, and interface. Network and customer resources should be integrated in order to create new business ecosystems. This paper describes new threats and challenges facing telecom operators and analyzes how leading operators are handling transformation in terms of operations and business model. A new concept called distributed intelligent open system (DIOS)—a public computing communication network—is proposed. The architecture and key technologies of DIOS is discussed in detail.
文摘The publication of Tsinghua Science and Technology was started in 1996. Since then, it has been an international academic journal sponsored by Tsinghua University and published bimonthly. This journal aims at presenting the state-of-art scientific achievements in computer science, and other IT fields, and is currently indexed by Ei and other abstracting indices. From year 2013, the journal will be available for open access through IEEE Xplore Digital Library. This year's special section on Wireless Computing and Networking of Tsinghua Science and Technology is devoted to gather and present new research that address the challenges in the broad areas of Wireless Networks, Sensor Networks, Wireless Computing and Communication. While Wireless Networks have great potential to provide heterogeneous access and services for ubiquitous users, the demanding communication environment of wireless networks imposes challenges to many interesting research topics, such as channel estimation, communication protocol design, resource management, system design and so on. In Wireless Network research, it is unavoidable to wrestle unique problems such as non-uniform spectrum allocation, various radio resource management policies, economic concerns, the scarcity of radio resources, and user mobility. This Special Section therefore aims to publish high quality, original, unpublished research papers in the broad area of Wireless Computing and Networking, and thus presents a platform for scientists and scholars to share their observations and research results in the field. Specific topics for this special section include but are not limited to:
基金supported by the Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center。
文摘Fueled by the explosive growth of ultra-low-latency and real-time applications with specific computing and network performance requirements,the computing force network(CFN)has become a hot research subject.The primary CFN challenge is to leverage network resources and computing resources.Although recent advances in deep reinforcement learning(DRL)have brought significant improvement in network optimization,these methods still suffer from topology changes and fail to generalize for those topologies not seen in training.This paper proposes a graph neural network(GNN)based DRL framework to accommodate network trafic and computing resources jointly and efficiently.By taking advantage of the generalization capability in GNN,the proposed method can operate over variable topologies and obtain higher performance than the other DRL methods.
基金supported by the National Natural Science Foundation of China(No.2022ZD0115303)the 2023 Beijing Outstanding Young Engineers Innovation Studio,Chinathe Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Foundation(No.CMYJY-202200536)。
文摘Under the development of computing and network convergence,considering the computing and network resources of multiple providers as a whole in a computing force network(CFN)has gradually become a new trend.However,since each computing and network resource provider(CNRP)considers only its own interest and competes with other CNRPs,introducing multiple CNRPs will result in a lack of trust and difficulty in unified scheduling.In addition,concurrent users have different requirements,so there is an urgent need to study how to optimally match users and CNRPs on a many-to-many basis,to improve user satisfaction and ensure the utilization of limited resources.In this paper,we adopt a reputation model based on the beta distribution function to measure the credibility of CNRPs and propose a performance-based reputation update model.Then,we formalize the problem into a constrained multi-objective optimization problem and find feasible solutions using a modified fast and elitist non-dominated sorting genetic algorithm(NSGA-II).We conduct extensive simulations to evaluate the proposed algorithm.Simulation results demonstrate that the proposed model and the problem formulation are valid,and the NSGA-II is effective and can find the Pareto set of CFN,which increases user satisfaction and resource utilization.Moreover,a set of solutions provided by the Pareto set give us more choices of the many-to-many matching of users and CNRPs according to the actual situation.
基金supported by the National Natural Science Foundation of China(Nos.62271062 and 62071063)。
文摘Federated learning effectively addresses issues such as data privacy by collaborating across participating devices to train global models.However,factors such as network topology and computing power of devices can affect its training or communication process in complex network environments.Computing and network convergence(CNC)of sixth-generation(6G)networks,a new network architecture and paradigm with computing-measurable,perceptible,distributable,dispatchable,and manageable capabilities,can effectively support federated learning training and improve its communication efficiency.By guiding the participating devices'training in federated learning based on business requirements,resource load,network conditions,and computing power of devices,CNC can reach this goal.In this paper,to improve the communication eficiency of federated learning in complex networks,we study the communication eficiency optimization methods of federated learning for CNC of 6G networks that give decisions on the training process for different network conditions and computing power of participating devices.The simulations address two architectures that exist for devices in federated learning and arrange devices to participate in training based on arithmetic power while achieving optimization of communication efficiency in the process of transferring model parameters.The results show that the methods we proposed can cope well with complex network situations,effectively balance the delay distribution of participating devices for local training,improve the communication eficiency during the transfer of model parameters,and improve the resource utilization in the network.
文摘Open Editor is an Object-Oriented multimedia editor,which runs in the network distributed environment.To add audio media into multimedia application,an audio server based on Client/Server paradigm is designed.In this paper,we first give an overview of Open Editor,then an in-depth discussion of the implementation techniques of audio functions is presented.
基金supported by the National Natural Science Foundation of China(61202004)
文摘Non-center network computing environments have some unique characteristics, such as instability, heterogeneity, autonomy, distribution and openness, which bring serious issues of security and reliability. This article proposes a brand-new credibility protection mechanism for resource sharing and collaboration in non-center network computing environments. First, the three-dimensional hierarchical classified topology (3DHCT) is proposed, which provides a basic framework for realizations of the identity credibility, the behavior credibility and the capability credibility. Next, the agent technology is utilized to construct the credibility protection model. This article also proposes a new comprehensive credibility evaluation algorithm with simple, efficient, quantitative and able to meet the requirements of evaluating behavior credibility and the capability credibility evaluation as well. The Dempster-Shafer theory of evidence and the combination rule are used to achieve the evaluation of the capability credibility. The behavior credibility is evaluated with the current and historical performance of nodes for providers and consumers to realize more accurate prediction. Based on the non-center network computing simulation test platform, simulation is been conducted to test the performance and validity of the proposed algorithms. Experiment and analysis show that the proposed algorithms are suitable for large-scale, dynamic network computing environments, and able to maintain the credibility for networks without relying on central node, make a non-center network gradually evolve into an orderly, stable and reliable computing environment efficiently.
基金supported by the grants from National Natural Science Foundation of China (No. 10872069)
文摘Objective To investigate the spike activities of cerebellar cortical cells in a computational network model con- structed based on the anatomical structure of cerebellar cortex. Methods and Results The multicompartment model of neuron and NEURON software were used to study the external influences on cerebellar cortical cells. Various potential spike patterns in these cells were obtained. By analyzing the impacts of different incoming stimuli on the potential spike of Purkinje cell, temporal focusing caused by the granule cell-golgi cell feedback inhibitory loop to Purkinje cell and spa- tial focusing caused by the parallel fiber-basket/stellate cell local inhibitory loop to Purkinje cell were discussed. Finally, the motor learning process of rabbit eye blink conditioned reflex was demonstrated in this model. The simulation results showed that when the afferent from climbing fiber existed, rabbit adaptation to eye blinking gradually became stable under the Spike Timing-Dependent Plasticity (STDP) learning rule. Conclusion The constructed cerebellar cortex network is a reliable and feasible model. The model simulation results confirmed the output signal stability of cerebellar cortex after STDP learning and the network can execute the function of spatial and temporal focusing.
文摘In this paper, an optimum tactic of multi-grid parallel algorithmwith virtual boundary forecast method is disscussed, and a two-stage implementationis presented. The numerical results of solving a non-linear heat transfer equationshow that the optimum implementation is much better than the non-optimum one.