In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air...In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air as the cooling fluid. This enabled us to evaluate some of the parameters influencing the electrical and thermal performance of this device. The results showed that the temperature, thermal efficiency and electrical efficiency delivered depend on the air mass flow rate. The electrical and thermal efficiencies for different values of air mass flow are encouraging, and demonstrate the benefits of cooling photovoltaic cells. The results show that thermal efficiency decreases air flow rate greater than 0.7 kg/s, whatever the value of the light concentration used. The thermal efficiency of the solar cell increases as the light concentration increases, whatever the air flow rate used. For a concentration equal to 30 sun, the thermal efficiency is 0.16 with an air flow rate equal to 0.005 kg/s;the thermal efficiency increases to 0.19 with an air flow rate equal to 0.1 kg/s at the same concentration. An interesting and useful finding was that the proposed numerical model allows the determination of the electrical as well as thermal efficiency of the hybrid CPV/T with air flow as cooling fluid.展开更多
A prompt gamma-neutron activation analysis(PGNAA) system was developed to detect the iron content of iron ore concentrate. Because of the self-absorption effect of gamma-rays and neutrons, and the interference of chlo...A prompt gamma-neutron activation analysis(PGNAA) system was developed to detect the iron content of iron ore concentrate. Because of the self-absorption effect of gamma-rays and neutrons, and the interference of chlorine in the neutron field, the linear relationship between the iron analytical coefficient and total iron content was poor, increasing the error in the quantitative analysis. To solve this problem, gamma-ray self-absorption compensation and a neutron field correction algorithm were proposed, and the experimental results have been corrected using this algorithm. The results show that the linear relationship between the iron analytical coefficient and total iron content was considerably improved after the correction. The linear correlation coefficients reached 0.99 or more.展开更多
AIM To examine the evidence behind the use of concentrated bone marrow aspirate(c BMA) in cartilage, bone, and tendon repair; establish proof of concept for the use of cB MA in these biologic environments; and provide...AIM To examine the evidence behind the use of concentrated bone marrow aspirate(c BMA) in cartilage, bone, and tendon repair; establish proof of concept for the use of cB MA in these biologic environments; and provide the level and quality of evidence substantiating the use of cB MA in the clinical setting.METHODS We conducted a systematic review according to PRISMA guidelines. EMBASE, MEDLINE, and Web of Knowledge databases were screened for the use of cB MA in the repair of cartilage, bone, and tendon repair. We extracted data on tissue type, cB MA preparation, cB MA concentration, study methods, outcomes, and level of evidence and reported the results in tables and text.RESULTS A total of 36 studies met inclusion/exclusion criteria and were included in this review. Thirty-one of 36(86%) studies reported the method of centrifugation and preparation of cB MA with 15(42%) studies reporting either a cell concentration or an increase from baseline. Variation of c BMA application was seen amongst the studies evaluated. Twenty-one of 36(58%) were level of evidence Ⅳ, 12/36(33%) were level of evidence Ⅲ, and 3/36(8%) were level of evidence Ⅱ. Studies evaluated full thickness chondral lesions(7 studies), osteochondral lesions(10 studies), osteoarthritis(5 studies), nonunion or fracture(9 studies), or tendon injuries(5 studies). Significant clinical improvement with the presence of hyaline-like values and lower incidence of fibrocartilage on T2 mapping was found in patients receiving cB MA in the treatment of cartilaginous lesions. Bone consolidation and time to bone union was improved in patients receiving cB MA. Enhanced healingrates, improved quality of the repair surface on ultrasound and magnetic resonance imaging, and a decreased risk of re-rupture was demonstrated in patients receiving cB MA as an adjunctive treatment in tendon repair. CONCLUSION The current literature demonstrates the potential benefits of utilizing c BMA for the repair of cartilaginous lesions, bony defects, and tendon injuries in the clinical setting. This study also demonstrates discrepancies between the literature with regards to various methods of centrifugation, variable cell count concentrations, and lack of standardized outcome measures. Future studies should attempt to examine the integral factors necessary for tissue regeneration and renewal including stem cells, growth factors and a biologic scaffold.展开更多
The leaching behavior of a copper flotation concentrate was investigated using ammonium persulfate (APS) in an autoclave systee. The decomposition products of APS, active oxygen, and acidic medium were used to extra...The leaching behavior of a copper flotation concentrate was investigated using ammonium persulfate (APS) in an autoclave systee. The decomposition products of APS, active oxygen, and acidic medium were used to extract metals from the concentrate. Leaching experiments were performed to compare the availability of APS as an oxidizing agent for leaching of the concentrate under atmospheric conditions and in an autoclave system. Leaching temperature and APS concentration were found to be important parameters in both leaching systems. Atmospheric leaching studies showed that the metal extractions increased with the increase in APS concentration and temperature (up to 333 K). A similar tendency was determined in the autoclave studies up to 423 K. It was also determined that the metal extractions decreased at temperatures above 423 K due to the passivation of the particle surface by molten elemental sulfur. The results showed that higher copper extractions could be achieved using an autoclave system.展开更多
ZSM-5 zeolite was synthesized in a super-concentrated system using different kinds of surfactants. The ZSM-5 samples were characterized by XRD, SEM, FT-IR and BET techniques. The surfactant could change the properties...ZSM-5 zeolite was synthesized in a super-concentrated system using different kinds of surfactants. The ZSM-5 samples were characterized by XRD, SEM, FT-IR and BET techniques. The surfactant could change the properties of ZSM-5 zeolite, including the crystallinity, the crystal grain size, the surface area, the pore volume and the Si/Al mole ratio.展开更多
In order to realize on-line quantitative detection on SF6 and effective control of nlnning state of SF6 high voltage power supply system, a concentrated SF6 quantitative ultrasonic on-line deteetion system has been de...In order to realize on-line quantitative detection on SF6 and effective control of nlnning state of SF6 high voltage power supply system, a concentrated SF6 quantitative ultrasonic on-line deteetion system has been developed based on the actual demand of electric power system consumers. There are four major characteristics in this system. Firstly, the gas of maximum 64 detection points is transferred through the specific air path to the detection devices to he detected and analyzed, thereby the electrical lines and the complicated installation of the collectors can be avoided; secondly, the differential technique is used to shield the influence of environmental factors, which effectively improves the accuracy of the acoustic detection; thirdly, the SF6 coneentration is determined by the speed and phase in the ultrasonic wave trans- mission process, therefore there is no secondary pollution for the purely physical means; finally, the ma- ture embedded technique is applied in this system to improve its intelligence and stability.展开更多
Fouling caused by excess metal ions in hard water can negatively impact the performance of the circulating cooling water system(CCWS)by depositing ions on the heat exchanger's surface.Currently,the operation optim...Fouling caused by excess metal ions in hard water can negatively impact the performance of the circulating cooling water system(CCWS)by depositing ions on the heat exchanger's surface.Currently,the operation optimization of CCWS often prioritizes short-term flow velocity optimization for minimizing power consumption,without considering fouling.However,low flow velocity promotes fouling.Therefore,it's crucial to balance fouling and energy/water conservation for optimal CCWS long-term operation.This study proposes a mixed-integer nonlinear programming(MINLP)model to achieve this goal.The model considers fouling in the pipeline,dynamic concentration cycle,and variable frequency drive to optimize the synergy between heat transfer,pressure drop,and fouling.By optimizing the concentration cycle of the CCWS,water conservation and fouling control can be achieved.The model can obtain the optimal operating parameters for different operation intervals,including the number of pumps,frequency,and valve local resistance coefficient.Sensitivity experiments on cycle and environmental temperature reveal that as the cycle increases,the marginal benefits of energy/water conservation decrease.In periods with minimal impact on fouling rate,energy/water conservation can be achieved by increasing the cycle while maintaining a low fouling rate.Overall,the proposed model has significant energy/water saving effects and can comprehensively optimize the CCWS through its incorporation of fouling and cycle optimization.展开更多
Seasonal and sexual variations as well as the effect of dry feed supplement on total drinking water intake and its utilization were observed in mithun (Bosfrontalis) - a semi-wild animal found in North Eastern Hill ...Seasonal and sexual variations as well as the effect of dry feed supplement on total drinking water intake and its utilization were observed in mithun (Bosfrontalis) - a semi-wild animal found in North Eastern Hill Region (NEHR) of India. In a completely randomized design, twelve adult mithuns (B. frontalis) as per their sex and body weight were assigned in two different rearing systems (free grazing and free grazing with dry concentrate feed supplementation), and ten growing male mithuns as per their body weight assigned in two different levels of dry concentrate feed supplementation (1.o kg and 2.0 kg dry concentrate feeds on green forage based diet) and in two different seasons (summer and winter). It was observed that the environmental temperature had a significant effect on drinking water intake by mithuns. Drinking water consumption (per unit of body weight) was significantly (P 〈 0.05) higher in summer than in winter. Supplementation of concentrate feed on free grazing animals resulted in increase in water consumption. Total water consumption (drinking as well as performed water) was found to be 15.18 litres per 100 kg body weight by growing mithun. Feed dry matter and digestible nutrient intakes by growing mithun were observed to be increased with the increase of supplementation of dry concentrate feed. Roughage to concentrate ratio did not affect the nutrient digestibility. Mithun calves drank an average of 4.30 litres water for each kg of dry matter intake. Metabolic water was significantly (P〈0.01) increased with the increase of supplementation of concentrate feed whereas water turn over, which depends upon the body weight of the animals, did not differ significantly on offering of lower or higher level of dry feed. Faecal water loss of growing mithun was decreased with the increase in intake of concentrate feed and was estimated to be 33 - 46 % of total water intake. Excretion of water through faeces of mithun was about 3.8 % of body weight. It could, therefore, be inferred that water intake by mithun varied with seasons, rearing systems and dry feed consumption. As far as the water nutrition is concerned, it is needed to give an attention while feeding mithun in summer with dry feed supplementation under semi-intensive system of rearing.展开更多
Concentrated photovoltaic(CPV)has been identified as an effective method to further enhance the efficiency of photovoltaic cells.Previous studies on CPV mainly focused on III-V multi-junction cells.Nevertheless,Ⅲ-ⅤC...Concentrated photovoltaic(CPV)has been identified as an effective method to further enhance the efficiency of photovoltaic cells.Previous studies on CPV mainly focused on III-V multi-junction cells.Nevertheless,Ⅲ-ⅤCPV technology is mainly used in niche applications due to its high cost.Here,we use metal-halide perovskite solar cell(PSC)to demonstrate a concentrated photovoltaic-thermoelectric tandem device.The thermoelectric generator(TEG)is utilized to reduce the effect of heat generation under concentrated solar irradiance.Our tandem system achieved a peak power conversion efficiency(PCE)of 25.0%at a solar concentration of 3 suns.This efficiency exceeded that of the single PSC by~4.7%.Our work proves that by controlling the heat flow in concentrated PSC-TEG tandem system,the redundant heat produced by upper PSC can be effectively reused.This tandem structure provides a promising approach to improve the efficiency and stability of PSC under low-concentrated solar irradiation.展开更多
BACKGROUND The aim of this study was to report a case of a patient who suffered from severe concentrated sulfuric acid burns while working at high altitude.This patient recovered after systemic treatment.We also provi...BACKGROUND The aim of this study was to report a case of a patient who suffered from severe concentrated sulfuric acid burns while working at high altitude.This patient recovered after systemic treatment.We also provide a literature review for a better understanding of the disease.CASE SUMMARY A 30-year-old male,who was working in a local chemical plant in Xining at an altitude of 2261 m,suffered from 85%burns(Ⅲ°70%,deep Ⅱ°15%)after a tank containing 80%concentration of sulfuric acid exploded.The patient immediately received a series of first aid treatments,as well as rigorous wound managements after admission,which included protection for the whole body and organs,prevention and treatment of eye burns,and the appropriate oxygen therapy.After 65 d of treatment,the burn wounds had completely healed,and the patient was transferred to another specialized hospital for further eye treatment.The first aid before admission and the emergency treatment of wounds following admission were appropriate.No severe complications of sepsis,severe renal insufficiency,septic costal chondritis,corneal perforation or other burns occurred during the treatment.CONCLUSION The main causes of concentrated sulfuric acid burns consisted of accidental burns at work,accidents in the outside,factitious injuries and improper laboratory operations.The clinical manifestations were mostly deep Ⅱ°and Ⅲ°burns,with a formation of brown-black,leather-like eschar on the wound surface and locally embolized dendrite-like vessels.The clear cause of the injury and typical clinical manifestations in this case made it easy to diagnosis.However,adult cases with severe concentrated sulfuric acid burns in high altitude areas are rare,so the successful treatment of this case is of great significance.展开更多
Contribution of first flush runoff events from intense rainfall to downstream aquatic ecosystems are often reported in terms of sediment and nutrient delivery, with hardly any consideration to the contribution that st...Contribution of first flush runoff events from intense rainfall to downstream aquatic ecosystems are often reported in terms of sediment and nutrient delivery, with hardly any consideration to the contribution that standing, concentrated tailwater in primary aquatic systems makes to downstream nutrient loads. Two geographically distinct studies (Jonesboro Arkansas, and Stoneville Mississippi; 4 studies, n = 30) evaluated the effectiveness of drainage ditch systems to mitigate nutrient concentrations and loads. Within each independent study all experimental ditches had elevated background nutrient concentrations as a result of standing water, prior to the start of each simulated runoff experiment. These concentrations remained elevated 15-30 minutes post the start of each simulation as the concentrated, impounded water was pushed out through each system. In both these systems, it was hypothesized that water had accumulated in the respective drainage ditches and had been concentrated though evaporation and aquatic macrophyte transpiration. It is theorized that additional controlled drainage with improved dilution and hydraulic residence management.展开更多
High concentrated PV multi-junction solar cells (HCPV) likely present a favorable alternative to achieve low cost of energy. However, multi-junction solar cell has different characteristics which should be settled bef...High concentrated PV multi-junction solar cells (HCPV) likely present a favorable alternative to achieve low cost of energy. However, multi-junction solar cell has different characteristics which should be settled before they can be adapted for large scale energy generation. Peak energy consumption in Kuwait usually occurs in periods of utilizing air conditioning systems which are essentially used in almost all year around in harsh climate like Kuwait. Power consumed at peak times is more costly than power needed to satisfy loads at regular consumption times. The main goal of the present research is to increase HCPV solar cells’ efficiency, to decrease maximum power cost in Kuwait. Multi-junction solar cells performance in weather conditions of Kuwait is investigated employing a single diode equivalent circuit model. The model developed considers the impacts of concentration ratio as well as temperature. Most research in literature review usually neglects shunt resistance of the diode, however this resistance is taken into consideration in current developed theoretical model. To calibrate the present model, current predictions are compared with corresponding measured data provided by multi-junction solar cell manufacturer. The total root mean square errors in the present model predictions are about 1.8%. This means that current developed model of single diode model which takes into account shunt resistance impacts gives precise and reliable data. HCP electrical efficiency is noticed to rise as concentration increases but to a certain concentration value, then it begins to decrease. In addition, utilizing HCPV linked to grid satisfies great decrease in maximum load. Power produced from HCPV modules is utilized to provide energy needs to a family in normal Kuwaiti family home to evaluate HCPV environmental effects. HCPV modules slopes and areas are changed to accomplish peak energy production all over the year. Present results reveal that optimum power production corresponds to HCPV modules directed to south and having latitude of 25°. In addition, employing HCPV modules can avoid approximately 1.55 ton of emitted CO2 per year. In conclusion, current work reveals the advantage impacts of grid connected HCPV in Kuwait weather.展开更多
Flotation is the most common method to obtain concentrate through the selective adsorption of collectors on target minerals to make them hydrophobic and floatable.In the hydrometallurgy of concentrate,collectors adsor...Flotation is the most common method to obtain concentrate through the selective adsorption of collectors on target minerals to make them hydrophobic and floatable.In the hydrometallurgy of concentrate,collectors adsorbed on concentrate can damage ion-exchange resin and increase the chemical oxygen demand(COD)value of wastewater.In this work,we proposed a new scheme,i.e.,desorbing the collectors from concentrate in ore dressing plant and reusing them in flotation flowsheet.Lead nitrate and benzohydroxamic acid(Pb-BHA)complex is a common collector in scheelite flotation.In this study,different physical(stirring or ultrasonic waves)and chemical(strong acid or alkali environment)methods for facilitating the desorption of Pb-BHA collector from scheelite concentrate were explored.Single-mineral desorption tests showed that under the condition of pulp pH 13 and ultrasonic treatment for 15 min,the highest desorption rates of Pb and BHA from the scheelite concentrate were 90.48%and 63.75%,respectively.Run-of-mine ore flotation tests revealed that the reuse of desorbed Pb and BHA reduced the collector dosage by 30%for BHA and 25%for Pb.The strong alkali environment broke the chemical bonds between Pb and BHA.The cavitation effect of ultrasonic waves effectively reduced the interaction intensity between Pb-BHA collector and scheelite surfaces.This method combining ultrasonic waves and strong alkali environment can effectively desorb the collectors from concentrate and provide“clean”scheelite concentrate for metallurgic plants;the reuse of desorbed collector in flotation flowsheet can reduce reagent cost for ore dressing plants.展开更多
Charge-exchange(CX) recombination spectroscopy is a powerful tool monitoring ion temperature and plasma rotation with good temporal and spatial resolutions. A compact, new design for a high-throughput, tri-band high s...Charge-exchange(CX) recombination spectroscopy is a powerful tool monitoring ion temperature and plasma rotation with good temporal and spatial resolutions. A compact, new design for a high-throughput, tri-band high spectral resolution spectrometer has been developed for the charge-exchange recombination spectroscopy measurement on the HL-2A tokamak. The simultaneous measurements of He II(468.57 nm), C VI(529.1 nm), and Dα(656.1 nm accompanied by beam emission spectra) with an acquisition frequency up to 400 Hz are achieved by vertically binning the spectrum from each fiber in experiments. Initial results indicate that the system can provide radial profiles of not only ion temperature and rotation velocity,but also concentration of carbon. For the case of helium, the measurements for the ion temperature and rotation velocity are straightforward but the apparent concentration associated with the observed CX intensity is obviously too high. Modeling of the active He II CX feature including plume contributions needs to be carried out to extract the true helium concentration.The spectrometer could become a prototype for the ITER charge-exchange recombination spectroscopy diagnostic and the pilot experiments, as presented here, demonstrate the possibility of impurity concentrations measurements based on the combined measurement of local beam emission and charge-exchange recombination spectroscopy spectra.展开更多
AIM:To compare high or low concentration of hyaluronic acid eye drops(HY)for dry eye syndromes(DES).METHODS:Randomized controlled trials(RCTs)comparing various concentrations of HY were searched in PubMed,Embase,Web o...AIM:To compare high or low concentration of hyaluronic acid eye drops(HY)for dry eye syndromes(DES).METHODS:Randomized controlled trials(RCTs)comparing various concentrations of HY were searched in PubMed,Embase,Web of Science,Cochrane,SinoMed,CNKI,Wanfang Database,CQVIP,and Chinese journals databases between inception and July 2023.Pooled standardized mean differences(SMD)or weighted mean difference(WMD)with 95%confidence intervals(CI)from RCTs evaluating Schirmer’s I test(SIT),corneal fluorescein staining score(CFS),tear breakup time(TBUT),DES score(DESS),and Ocular Surface Disease Index(OSDI)were calculated.Sensitivity analysis,Egger’s test and Meta-regression analysis were performed for all indicators.RESULTS:We conducted a Meta-analysis of 10 RCTs that met the inclusion criteria,involving 1796 cases.High-concentrations group significantly improved the outcome of CFS according to random effects modelling(SMD,-3.37;95%CI,-5.25 to-1.48;P=0.0005).The rest of the results were not statistically significant,including indicators such as SIT,TBUT,DESS and OSDI.CONCLUSION:For dry eyes with positive corneal staining,a high concentration of HY is recommended,whereas in other cases,a high concentration of HY does not offer a more pronounced advantage over a low concentration of HY in the treatment of dry eyes.展开更多
The ideal composite electrolyte for the pursued safe and high-energy-density lithium metal batteries(LMBs)is expected to demonstrate peculiarity of superior bulk conductivity,low interfacial resistances,and good compa...The ideal composite electrolyte for the pursued safe and high-energy-density lithium metal batteries(LMBs)is expected to demonstrate peculiarity of superior bulk conductivity,low interfacial resistances,and good compatibility against both Li-metal anode and high-voltage cathode.There is no composite electrolyte to synchronously meet all these requirements yet,and the battery performance is inhibited by the absence of effective electrolyte design.Here we report a unique"concentrated ionogel-in-ceramic"silanization composite electrolyte(SCE)and validate an electrolyte design strategy based on the coupling of high-content silane-conditioning garnet and concentrated ionogel that builds well-percolated Li+transport pathways and tackles the interface issues to respond all the aforementioned requirements.It is revealed that the silane conditioning enables the uniform dispersion of garnet nanoparticles at high content(70 wt%)and forms mixed-lithiophobic-conductive LiF-Li3N solid electrolyte interphase.Notably,the yielding SCE delivers an ultrahigh ionic conductivity of 1.76 X 10^(-3)S cm^(-1)at 25℃,an extremely low Li-metal/electrolyte interfacial area-specific resistance of 13Ωcm^(2),and a distinctly excellent long-term 1200 cycling without any capacity decay in 4.3 V Li‖LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)quasi-solid-state LMB.This composite electrolyte design strategy can be extended to other quasi-/solid-state LMBs.展开更多
In recent years,the interest in the development of highly concentrated electrolyte solutions for battery applications has increased enormously.Such electrolyte solutions are typically characterized by a low flammabili...In recent years,the interest in the development of highly concentrated electrolyte solutions for battery applications has increased enormously.Such electrolyte solutions are typically characterized by a low flammability,a high thermal and electrochemical stability and by the formation of a stable solid electrolyte interphase(SEI)in contact to electrode materials.However,the classification of concentrated electrolyte solutions in terms of the classical scheme"strong"or"weak"has been controversially discussed in the literature.In this paper,a comprehensive theoretical framework is presented for a more general classification,which is based on a comparison of charge transport and mass transport.By combining the Onsager transport formalism with linear response theory,center-of-mass fluctuations and collective translational dipole fluctuations of the ions in equilibrium are related to transport properties in a lithium-ion battery cell,namely mass transport,charge transport and Li^(+)transport under anion-blocking conditions.The relevance of the classification approach is substantiated by showing that i)it is straightforward to classify highly concentrated electrolytes and that ii)both fast charge transport and fast mass transport are indispensable for achieving fast Li^(+)transport under anion-blocking conditions.展开更多
Trehalose(TRE)was used to improve the gastrointestinal tolerance of Lactobacillus plantarum embedded with whey protein concentrate/pullulan(WPC/PUL)hydrogel and the embedded L.plantarum was applied to juice.The study ...Trehalose(TRE)was used to improve the gastrointestinal tolerance of Lactobacillus plantarum embedded with whey protein concentrate/pullulan(WPC/PUL)hydrogel and the embedded L.plantarum was applied to juice.The study indicated that 5%TRE significantly increased the viable counts of L.plantarum embedded in WPC/PUL hydrogel from(8.83±0.03)to(9.14±0.04)(lg(CFU/g))in simulated gastric juice(SGJ)and from(9.13±0.04)to(9.38±0.04)(lg(CFU/g))in simulated intestinal juice,respectively.The addition of TRE improved the glass transition temperature of WPC/PUL hydrogel and decreased the hardness and its solubility in SGJ,which may be responsible for the improved protection of WPC/PUL hydrogels on L.plantarum.In addition,TRE increased the viable counts of L.plantarum in WPC/PUL probiotic microcapsule juice at low pH and high temperature during storage.展开更多
The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy(CSA)was studied using a molecular dynamics method.We have performed displacement cascade simulations to explore the generation and evo...The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy(CSA)was studied using a molecular dynamics method.We have performed displacement cascade simulations to explore the generation and evolution behavior of irradiation defects.The results demonstrate that the defect accumulation and agglomeration in TiVTa CSA are significantly suppressed compared to pure V.The peak value of Frenkel pairs during cascade collisions in TiVTa CSA is much higher than that in pure V due to the lower formation energy of point defects.Meanwhile,the longer lifetime of the thermal spike relaxation and slow energy dissipation capability of TiVTa CSA can facilitate the recombination of point defects.The defect agglomeration rate in TiVTa CSA is much lower due to the lower binding energy of interstitial clusters and reduced interstitial diffusivity.Furthermore,the occurrence probability of dislocation loops in TiVTa CSA is lower than that in pure V.The reduction in primary radiation damage may enhance the radiation resistance of TiVTa CSA,and the improved radiation tolerance is primarily attributed to the relaxation stage and long-term defect evolution rather than the ballistic stage.These results can provide fundamental insights into irradiation-induced defects evolution in refractory CSAs.展开更多
One of the effective options for energy saving in terms of heat costs for the formation of routine thermal conditions of working areas of large-sized industrial premises is the replacement of traditional convective(wa...One of the effective options for energy saving in terms of heat costs for the formation of routine thermal conditions of working areas of large-sized industrial premises is the replacement of traditional convective(water)heating systems with systems,the main part of which are gas infrared emitters.But the mass introduction of such systems based on emitters was held back until recently by the lack of scientific and technical foundations for ensuring not only the routine thermal conditions of local working areas,but also ensuring acceptable concentrations of carbon dioxide,which is formed during the operation of a gas emitter.Solving the latter problem by the method of experimental selection of heating and air exchange modes is practically impossible due to the multivariate nature of possible solutions to this problem.Therefore,the purpose of the work is to analyze the results of theoretical studies of the possibility of ensuring an acceptable level of carbon dioxide concentrations in local working areas during the operation of gas infrared emitters and an air exchange system.Numerical modeling of heat and mass transfer processes under such conditions was performed in a fairly wide range of the main significant factors:air flow rate in the air exchange system from 0.01 to 0.04 kg/s,the position of the air inlet and outlet channels relative to the radiator and the local workplace(height from 0.3 to 4.1 m).It was found that by varying the numerical values of these factors,it is possible to ensure carbon dioxide concentrations in the local working area within the permissible limits of up to 1400 ppm.展开更多
文摘In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air as the cooling fluid. This enabled us to evaluate some of the parameters influencing the electrical and thermal performance of this device. The results showed that the temperature, thermal efficiency and electrical efficiency delivered depend on the air mass flow rate. The electrical and thermal efficiencies for different values of air mass flow are encouraging, and demonstrate the benefits of cooling photovoltaic cells. The results show that thermal efficiency decreases air flow rate greater than 0.7 kg/s, whatever the value of the light concentration used. The thermal efficiency of the solar cell increases as the light concentration increases, whatever the air flow rate used. For a concentration equal to 30 sun, the thermal efficiency is 0.16 with an air flow rate equal to 0.005 kg/s;the thermal efficiency increases to 0.19 with an air flow rate equal to 0.1 kg/s at the same concentration. An interesting and useful finding was that the proposed numerical model allows the determination of the electrical as well as thermal efficiency of the hybrid CPV/T with air flow as cooling fluid.
基金supported by the National Key Scientific Instrument and Equipment Development Projects(No.2012YQ240121)Liaoning science and technology project(No.2017220010)Changchun Science and Technology Bureau Local Company and College(University,Institution)Cooperation Projects(No.17DY023)
文摘A prompt gamma-neutron activation analysis(PGNAA) system was developed to detect the iron content of iron ore concentrate. Because of the self-absorption effect of gamma-rays and neutrons, and the interference of chlorine in the neutron field, the linear relationship between the iron analytical coefficient and total iron content was poor, increasing the error in the quantitative analysis. To solve this problem, gamma-ray self-absorption compensation and a neutron field correction algorithm were proposed, and the experimental results have been corrected using this algorithm. The results show that the linear relationship between the iron analytical coefficient and total iron content was considerably improved after the correction. The linear correlation coefficients reached 0.99 or more.
文摘AIM To examine the evidence behind the use of concentrated bone marrow aspirate(c BMA) in cartilage, bone, and tendon repair; establish proof of concept for the use of cB MA in these biologic environments; and provide the level and quality of evidence substantiating the use of cB MA in the clinical setting.METHODS We conducted a systematic review according to PRISMA guidelines. EMBASE, MEDLINE, and Web of Knowledge databases were screened for the use of cB MA in the repair of cartilage, bone, and tendon repair. We extracted data on tissue type, cB MA preparation, cB MA concentration, study methods, outcomes, and level of evidence and reported the results in tables and text.RESULTS A total of 36 studies met inclusion/exclusion criteria and were included in this review. Thirty-one of 36(86%) studies reported the method of centrifugation and preparation of cB MA with 15(42%) studies reporting either a cell concentration or an increase from baseline. Variation of c BMA application was seen amongst the studies evaluated. Twenty-one of 36(58%) were level of evidence Ⅳ, 12/36(33%) were level of evidence Ⅲ, and 3/36(8%) were level of evidence Ⅱ. Studies evaluated full thickness chondral lesions(7 studies), osteochondral lesions(10 studies), osteoarthritis(5 studies), nonunion or fracture(9 studies), or tendon injuries(5 studies). Significant clinical improvement with the presence of hyaline-like values and lower incidence of fibrocartilage on T2 mapping was found in patients receiving cB MA in the treatment of cartilaginous lesions. Bone consolidation and time to bone union was improved in patients receiving cB MA. Enhanced healingrates, improved quality of the repair surface on ultrasound and magnetic resonance imaging, and a decreased risk of re-rupture was demonstrated in patients receiving cB MA as an adjunctive treatment in tendon repair. CONCLUSION The current literature demonstrates the potential benefits of utilizing c BMA for the repair of cartilaginous lesions, bony defects, and tendon injuries in the clinical setting. This study also demonstrates discrepancies between the literature with regards to various methods of centrifugation, variable cell count concentrations, and lack of standardized outcome measures. Future studies should attempt to examine the integral factors necessary for tissue regeneration and renewal including stem cells, growth factors and a biologic scaffold.
基金financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK,No.106M177)
文摘The leaching behavior of a copper flotation concentrate was investigated using ammonium persulfate (APS) in an autoclave systee. The decomposition products of APS, active oxygen, and acidic medium were used to extract metals from the concentrate. Leaching experiments were performed to compare the availability of APS as an oxidizing agent for leaching of the concentrate under atmospheric conditions and in an autoclave system. Leaching temperature and APS concentration were found to be important parameters in both leaching systems. Atmospheric leaching studies showed that the metal extractions increased with the increase in APS concentration and temperature (up to 333 K). A similar tendency was determined in the autoclave studies up to 423 K. It was also determined that the metal extractions decreased at temperatures above 423 K due to the passivation of the particle surface by molten elemental sulfur. The results showed that higher copper extractions could be achieved using an autoclave system.
基金the National Natural Science Foundation(20473039)for the support of this work
文摘ZSM-5 zeolite was synthesized in a super-concentrated system using different kinds of surfactants. The ZSM-5 samples were characterized by XRD, SEM, FT-IR and BET techniques. The surfactant could change the properties of ZSM-5 zeolite, including the crystallinity, the crystal grain size, the surface area, the pore volume and the Si/Al mole ratio.
基金Supported by the National Natural Science Foundation of China (No. 10574038)
文摘In order to realize on-line quantitative detection on SF6 and effective control of nlnning state of SF6 high voltage power supply system, a concentrated SF6 quantitative ultrasonic on-line deteetion system has been developed based on the actual demand of electric power system consumers. There are four major characteristics in this system. Firstly, the gas of maximum 64 detection points is transferred through the specific air path to the detection devices to he detected and analyzed, thereby the electrical lines and the complicated installation of the collectors can be avoided; secondly, the differential technique is used to shield the influence of environmental factors, which effectively improves the accuracy of the acoustic detection; thirdly, the SF6 coneentration is determined by the speed and phase in the ultrasonic wave trans- mission process, therefore there is no secondary pollution for the purely physical means; finally, the ma- ture embedded technique is applied in this system to improve its intelligence and stability.
基金Financial support from the National Natural Science Foundation of China (22022816 and 22078358)
文摘Fouling caused by excess metal ions in hard water can negatively impact the performance of the circulating cooling water system(CCWS)by depositing ions on the heat exchanger's surface.Currently,the operation optimization of CCWS often prioritizes short-term flow velocity optimization for minimizing power consumption,without considering fouling.However,low flow velocity promotes fouling.Therefore,it's crucial to balance fouling and energy/water conservation for optimal CCWS long-term operation.This study proposes a mixed-integer nonlinear programming(MINLP)model to achieve this goal.The model considers fouling in the pipeline,dynamic concentration cycle,and variable frequency drive to optimize the synergy between heat transfer,pressure drop,and fouling.By optimizing the concentration cycle of the CCWS,water conservation and fouling control can be achieved.The model can obtain the optimal operating parameters for different operation intervals,including the number of pumps,frequency,and valve local resistance coefficient.Sensitivity experiments on cycle and environmental temperature reveal that as the cycle increases,the marginal benefits of energy/water conservation decrease.In periods with minimal impact on fouling rate,energy/water conservation can be achieved by increasing the cycle while maintaining a low fouling rate.Overall,the proposed model has significant energy/water saving effects and can comprehensively optimize the CCWS through its incorporation of fouling and cycle optimization.
文摘Seasonal and sexual variations as well as the effect of dry feed supplement on total drinking water intake and its utilization were observed in mithun (Bosfrontalis) - a semi-wild animal found in North Eastern Hill Region (NEHR) of India. In a completely randomized design, twelve adult mithuns (B. frontalis) as per their sex and body weight were assigned in two different rearing systems (free grazing and free grazing with dry concentrate feed supplementation), and ten growing male mithuns as per their body weight assigned in two different levels of dry concentrate feed supplementation (1.o kg and 2.0 kg dry concentrate feeds on green forage based diet) and in two different seasons (summer and winter). It was observed that the environmental temperature had a significant effect on drinking water intake by mithuns. Drinking water consumption (per unit of body weight) was significantly (P 〈 0.05) higher in summer than in winter. Supplementation of concentrate feed on free grazing animals resulted in increase in water consumption. Total water consumption (drinking as well as performed water) was found to be 15.18 litres per 100 kg body weight by growing mithun. Feed dry matter and digestible nutrient intakes by growing mithun were observed to be increased with the increase of supplementation of dry concentrate feed. Roughage to concentrate ratio did not affect the nutrient digestibility. Mithun calves drank an average of 4.30 litres water for each kg of dry matter intake. Metabolic water was significantly (P〈0.01) increased with the increase of supplementation of concentrate feed whereas water turn over, which depends upon the body weight of the animals, did not differ significantly on offering of lower or higher level of dry feed. Faecal water loss of growing mithun was decreased with the increase in intake of concentrate feed and was estimated to be 33 - 46 % of total water intake. Excretion of water through faeces of mithun was about 3.8 % of body weight. It could, therefore, be inferred that water intake by mithun varied with seasons, rearing systems and dry feed consumption. As far as the water nutrition is concerned, it is needed to give an attention while feeding mithun in summer with dry feed supplementation under semi-intensive system of rearing.
基金supported by Tsinghua University Initiative Scientific Research Programthe National Natural Science Foundation of China(NSFC,51772166,52072207)。
文摘Concentrated photovoltaic(CPV)has been identified as an effective method to further enhance the efficiency of photovoltaic cells.Previous studies on CPV mainly focused on III-V multi-junction cells.Nevertheless,Ⅲ-ⅤCPV technology is mainly used in niche applications due to its high cost.Here,we use metal-halide perovskite solar cell(PSC)to demonstrate a concentrated photovoltaic-thermoelectric tandem device.The thermoelectric generator(TEG)is utilized to reduce the effect of heat generation under concentrated solar irradiance.Our tandem system achieved a peak power conversion efficiency(PCE)of 25.0%at a solar concentration of 3 suns.This efficiency exceeded that of the single PSC by~4.7%.Our work proves that by controlling the heat flow in concentrated PSC-TEG tandem system,the redundant heat produced by upper PSC can be effectively reused.This tandem structure provides a promising approach to improve the efficiency and stability of PSC under low-concentrated solar irradiation.
基金Qinghai Association for Science and Technology Support Project for Young and Middle-aged Talents in Science and Technology,No.2019QHSKXRCTJ03.
文摘BACKGROUND The aim of this study was to report a case of a patient who suffered from severe concentrated sulfuric acid burns while working at high altitude.This patient recovered after systemic treatment.We also provide a literature review for a better understanding of the disease.CASE SUMMARY A 30-year-old male,who was working in a local chemical plant in Xining at an altitude of 2261 m,suffered from 85%burns(Ⅲ°70%,deep Ⅱ°15%)after a tank containing 80%concentration of sulfuric acid exploded.The patient immediately received a series of first aid treatments,as well as rigorous wound managements after admission,which included protection for the whole body and organs,prevention and treatment of eye burns,and the appropriate oxygen therapy.After 65 d of treatment,the burn wounds had completely healed,and the patient was transferred to another specialized hospital for further eye treatment.The first aid before admission and the emergency treatment of wounds following admission were appropriate.No severe complications of sepsis,severe renal insufficiency,septic costal chondritis,corneal perforation or other burns occurred during the treatment.CONCLUSION The main causes of concentrated sulfuric acid burns consisted of accidental burns at work,accidents in the outside,factitious injuries and improper laboratory operations.The clinical manifestations were mostly deep Ⅱ°and Ⅲ°burns,with a formation of brown-black,leather-like eschar on the wound surface and locally embolized dendrite-like vessels.The clear cause of the injury and typical clinical manifestations in this case made it easy to diagnosis.However,adult cases with severe concentrated sulfuric acid burns in high altitude areas are rare,so the successful treatment of this case is of great significance.
文摘Contribution of first flush runoff events from intense rainfall to downstream aquatic ecosystems are often reported in terms of sediment and nutrient delivery, with hardly any consideration to the contribution that standing, concentrated tailwater in primary aquatic systems makes to downstream nutrient loads. Two geographically distinct studies (Jonesboro Arkansas, and Stoneville Mississippi; 4 studies, n = 30) evaluated the effectiveness of drainage ditch systems to mitigate nutrient concentrations and loads. Within each independent study all experimental ditches had elevated background nutrient concentrations as a result of standing water, prior to the start of each simulated runoff experiment. These concentrations remained elevated 15-30 minutes post the start of each simulation as the concentrated, impounded water was pushed out through each system. In both these systems, it was hypothesized that water had accumulated in the respective drainage ditches and had been concentrated though evaporation and aquatic macrophyte transpiration. It is theorized that additional controlled drainage with improved dilution and hydraulic residence management.
文摘High concentrated PV multi-junction solar cells (HCPV) likely present a favorable alternative to achieve low cost of energy. However, multi-junction solar cell has different characteristics which should be settled before they can be adapted for large scale energy generation. Peak energy consumption in Kuwait usually occurs in periods of utilizing air conditioning systems which are essentially used in almost all year around in harsh climate like Kuwait. Power consumed at peak times is more costly than power needed to satisfy loads at regular consumption times. The main goal of the present research is to increase HCPV solar cells’ efficiency, to decrease maximum power cost in Kuwait. Multi-junction solar cells performance in weather conditions of Kuwait is investigated employing a single diode equivalent circuit model. The model developed considers the impacts of concentration ratio as well as temperature. Most research in literature review usually neglects shunt resistance of the diode, however this resistance is taken into consideration in current developed theoretical model. To calibrate the present model, current predictions are compared with corresponding measured data provided by multi-junction solar cell manufacturer. The total root mean square errors in the present model predictions are about 1.8%. This means that current developed model of single diode model which takes into account shunt resistance impacts gives precise and reliable data. HCP electrical efficiency is noticed to rise as concentration increases but to a certain concentration value, then it begins to decrease. In addition, utilizing HCPV linked to grid satisfies great decrease in maximum load. Power produced from HCPV modules is utilized to provide energy needs to a family in normal Kuwaiti family home to evaluate HCPV environmental effects. HCPV modules slopes and areas are changed to accomplish peak energy production all over the year. Present results reveal that optimum power production corresponds to HCPV modules directed to south and having latitude of 25°. In addition, employing HCPV modules can avoid approximately 1.55 ton of emitted CO2 per year. In conclusion, current work reveals the advantage impacts of grid connected HCPV in Kuwait weather.
基金financially supported by the National Natural Science Foundation of China(Nos.52304314 and U23A20602)the Leading Talents of S&T Innovation of Hunan Province,China(No.2021RC4002)+2 种基金the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2024-16)the Open Foundation of Key Laboratory of Green Separation and Enrichment of Strategic Metal Mineral Resources(No.2023-02)the Fundamental Research Funds for the Central Universities of Central South University(No.2024ZZTS0008).
文摘Flotation is the most common method to obtain concentrate through the selective adsorption of collectors on target minerals to make them hydrophobic and floatable.In the hydrometallurgy of concentrate,collectors adsorbed on concentrate can damage ion-exchange resin and increase the chemical oxygen demand(COD)value of wastewater.In this work,we proposed a new scheme,i.e.,desorbing the collectors from concentrate in ore dressing plant and reusing them in flotation flowsheet.Lead nitrate and benzohydroxamic acid(Pb-BHA)complex is a common collector in scheelite flotation.In this study,different physical(stirring or ultrasonic waves)and chemical(strong acid or alkali environment)methods for facilitating the desorption of Pb-BHA collector from scheelite concentrate were explored.Single-mineral desorption tests showed that under the condition of pulp pH 13 and ultrasonic treatment for 15 min,the highest desorption rates of Pb and BHA from the scheelite concentrate were 90.48%and 63.75%,respectively.Run-of-mine ore flotation tests revealed that the reuse of desorbed Pb and BHA reduced the collector dosage by 30%for BHA and 25%for Pb.The strong alkali environment broke the chemical bonds between Pb and BHA.The cavitation effect of ultrasonic waves effectively reduced the interaction intensity between Pb-BHA collector and scheelite surfaces.This method combining ultrasonic waves and strong alkali environment can effectively desorb the collectors from concentrate and provide“clean”scheelite concentrate for metallurgic plants;the reuse of desorbed collector in flotation flowsheet can reduce reagent cost for ore dressing plants.
基金supported in part by National Natural Science Foundation of China (Nos.12275070, 12205084, 12305236 and 11675050)in part by the National Key Research and Development Program of China (Nos. 2022YFE03180200, 2022YFE03020001 and 2019YFE03010004)Innovation Program of Southwestern Institute of Physics (No. 202301XWCX001)。
文摘Charge-exchange(CX) recombination spectroscopy is a powerful tool monitoring ion temperature and plasma rotation with good temporal and spatial resolutions. A compact, new design for a high-throughput, tri-band high spectral resolution spectrometer has been developed for the charge-exchange recombination spectroscopy measurement on the HL-2A tokamak. The simultaneous measurements of He II(468.57 nm), C VI(529.1 nm), and Dα(656.1 nm accompanied by beam emission spectra) with an acquisition frequency up to 400 Hz are achieved by vertically binning the spectrum from each fiber in experiments. Initial results indicate that the system can provide radial profiles of not only ion temperature and rotation velocity,but also concentration of carbon. For the case of helium, the measurements for the ion temperature and rotation velocity are straightforward but the apparent concentration associated with the observed CX intensity is obviously too high. Modeling of the active He II CX feature including plume contributions needs to be carried out to extract the true helium concentration.The spectrometer could become a prototype for the ITER charge-exchange recombination spectroscopy diagnostic and the pilot experiments, as presented here, demonstrate the possibility of impurity concentrations measurements based on the combined measurement of local beam emission and charge-exchange recombination spectroscopy spectra.
文摘AIM:To compare high or low concentration of hyaluronic acid eye drops(HY)for dry eye syndromes(DES).METHODS:Randomized controlled trials(RCTs)comparing various concentrations of HY were searched in PubMed,Embase,Web of Science,Cochrane,SinoMed,CNKI,Wanfang Database,CQVIP,and Chinese journals databases between inception and July 2023.Pooled standardized mean differences(SMD)or weighted mean difference(WMD)with 95%confidence intervals(CI)from RCTs evaluating Schirmer’s I test(SIT),corneal fluorescein staining score(CFS),tear breakup time(TBUT),DES score(DESS),and Ocular Surface Disease Index(OSDI)were calculated.Sensitivity analysis,Egger’s test and Meta-regression analysis were performed for all indicators.RESULTS:We conducted a Meta-analysis of 10 RCTs that met the inclusion criteria,involving 1796 cases.High-concentrations group significantly improved the outcome of CFS according to random effects modelling(SMD,-3.37;95%CI,-5.25 to-1.48;P=0.0005).The rest of the results were not statistically significant,including indicators such as SIT,TBUT,DESS and OSDI.CONCLUSION:For dry eyes with positive corneal staining,a high concentration of HY is recommended,whereas in other cases,a high concentration of HY does not offer a more pronounced advantage over a low concentration of HY in the treatment of dry eyes.
基金supported by the Key Program for International Science and Technology Cooperation Projects of the Ministry of Science and Technology of China(2021YFE0109700)Technical Innovation and Application Development Project of Chongqing(Z20230084)+7 种基金Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure(SKL202106SIC)Chinese National Natural Science Fund(11632004,U1864208)National Science and Technology Major Project(2017-VII-0011-0106)Science and Technology Planning Project of Tianjin(20ZYJDJC00030)Key Program of Research and Development of Hebei Province(202030507040009)Fund for Innovative Research Groups of Natural Science Foundation of Hebei Province(A2020202002)Natural Science Foundation of Chongqing(cstc2021jcyjmsxm X0241)Key Project of Natural Science Foundation of Tianjin(S20ZDF077)
文摘The ideal composite electrolyte for the pursued safe and high-energy-density lithium metal batteries(LMBs)is expected to demonstrate peculiarity of superior bulk conductivity,low interfacial resistances,and good compatibility against both Li-metal anode and high-voltage cathode.There is no composite electrolyte to synchronously meet all these requirements yet,and the battery performance is inhibited by the absence of effective electrolyte design.Here we report a unique"concentrated ionogel-in-ceramic"silanization composite electrolyte(SCE)and validate an electrolyte design strategy based on the coupling of high-content silane-conditioning garnet and concentrated ionogel that builds well-percolated Li+transport pathways and tackles the interface issues to respond all the aforementioned requirements.It is revealed that the silane conditioning enables the uniform dispersion of garnet nanoparticles at high content(70 wt%)and forms mixed-lithiophobic-conductive LiF-Li3N solid electrolyte interphase.Notably,the yielding SCE delivers an ultrahigh ionic conductivity of 1.76 X 10^(-3)S cm^(-1)at 25℃,an extremely low Li-metal/electrolyte interfacial area-specific resistance of 13Ωcm^(2),and a distinctly excellent long-term 1200 cycling without any capacity decay in 4.3 V Li‖LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)quasi-solid-state LMB.This composite electrolyte design strategy can be extended to other quasi-/solid-state LMBs.
文摘In recent years,the interest in the development of highly concentrated electrolyte solutions for battery applications has increased enormously.Such electrolyte solutions are typically characterized by a low flammability,a high thermal and electrochemical stability and by the formation of a stable solid electrolyte interphase(SEI)in contact to electrode materials.However,the classification of concentrated electrolyte solutions in terms of the classical scheme"strong"or"weak"has been controversially discussed in the literature.In this paper,a comprehensive theoretical framework is presented for a more general classification,which is based on a comparison of charge transport and mass transport.By combining the Onsager transport formalism with linear response theory,center-of-mass fluctuations and collective translational dipole fluctuations of the ions in equilibrium are related to transport properties in a lithium-ion battery cell,namely mass transport,charge transport and Li^(+)transport under anion-blocking conditions.The relevance of the classification approach is substantiated by showing that i)it is straightforward to classify highly concentrated electrolytes and that ii)both fast charge transport and fast mass transport are indispensable for achieving fast Li^(+)transport under anion-blocking conditions.
基金Financial support was provided by the Jilin Provincial Science and Technology Department(20220202086NC)Jilin Provincial Science and Technology Development Plan Project(20220508115RC).
文摘Trehalose(TRE)was used to improve the gastrointestinal tolerance of Lactobacillus plantarum embedded with whey protein concentrate/pullulan(WPC/PUL)hydrogel and the embedded L.plantarum was applied to juice.The study indicated that 5%TRE significantly increased the viable counts of L.plantarum embedded in WPC/PUL hydrogel from(8.83±0.03)to(9.14±0.04)(lg(CFU/g))in simulated gastric juice(SGJ)and from(9.13±0.04)to(9.38±0.04)(lg(CFU/g))in simulated intestinal juice,respectively.The addition of TRE improved the glass transition temperature of WPC/PUL hydrogel and decreased the hardness and its solubility in SGJ,which may be responsible for the improved protection of WPC/PUL hydrogels on L.plantarum.In addition,TRE increased the viable counts of L.plantarum in WPC/PUL probiotic microcapsule juice at low pH and high temperature during storage.
基金Project supported by the Dean’s Fund of China Institute of Atomic Energy(Grant No.219256)the CNNC Science Fund for Talented Young Scholars.
文摘The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy(CSA)was studied using a molecular dynamics method.We have performed displacement cascade simulations to explore the generation and evolution behavior of irradiation defects.The results demonstrate that the defect accumulation and agglomeration in TiVTa CSA are significantly suppressed compared to pure V.The peak value of Frenkel pairs during cascade collisions in TiVTa CSA is much higher than that in pure V due to the lower formation energy of point defects.Meanwhile,the longer lifetime of the thermal spike relaxation and slow energy dissipation capability of TiVTa CSA can facilitate the recombination of point defects.The defect agglomeration rate in TiVTa CSA is much lower due to the lower binding energy of interstitial clusters and reduced interstitial diffusivity.Furthermore,the occurrence probability of dislocation loops in TiVTa CSA is lower than that in pure V.The reduction in primary radiation damage may enhance the radiation resistance of TiVTa CSA,and the improved radiation tolerance is primarily attributed to the relaxation stage and long-term defect evolution rather than the ballistic stage.These results can provide fundamental insights into irradiation-induced defects evolution in refractory CSAs.
基金supported by the Russian Science Foundation(grant number 20-19-00226).
文摘One of the effective options for energy saving in terms of heat costs for the formation of routine thermal conditions of working areas of large-sized industrial premises is the replacement of traditional convective(water)heating systems with systems,the main part of which are gas infrared emitters.But the mass introduction of such systems based on emitters was held back until recently by the lack of scientific and technical foundations for ensuring not only the routine thermal conditions of local working areas,but also ensuring acceptable concentrations of carbon dioxide,which is formed during the operation of a gas emitter.Solving the latter problem by the method of experimental selection of heating and air exchange modes is practically impossible due to the multivariate nature of possible solutions to this problem.Therefore,the purpose of the work is to analyze the results of theoretical studies of the possibility of ensuring an acceptable level of carbon dioxide concentrations in local working areas during the operation of gas infrared emitters and an air exchange system.Numerical modeling of heat and mass transfer processes under such conditions was performed in a fairly wide range of the main significant factors:air flow rate in the air exchange system from 0.01 to 0.04 kg/s,the position of the air inlet and outlet channels relative to the radiator and the local workplace(height from 0.3 to 4.1 m).It was found that by varying the numerical values of these factors,it is possible to ensure carbon dioxide concentrations in the local working area within the permissible limits of up to 1400 ppm.