This paper aims to present the exact closed form solutions and postbuckling behavior of the beam under a concentrated moment within the span length of beam. Two approaches are used in this paper. The non-linear govern...This paper aims to present the exact closed form solutions and postbuckling behavior of the beam under a concentrated moment within the span length of beam. Two approaches are used in this paper. The non-linear governing differential equations based on elastica theory are derived and solved analytically for the exact closed form solutions in terms of elliptic integral of the first and second kinds. The results are presented in graphical diagram of equilibrium paths, equilibrium configurations and critical loads. For validation of the results from the first approach, the shooting method is employed to solve a set of nonlinear differential equations with boundary conditions. The set of nonlinear governing differential equations are integrated by using Runge-Kutta method fifth order with adaptive step size scheme. The error norms of the end conditions are minimized within prescribed tolerance (10^-5). The results from both approaches are in good agreement. From the results, it is found that the stability of this type of beam exhibits both stable and unstable configurations. The limit load point existed. The roller support can move through the hinged support in some cases of β and leads to the more complex of the configuration shapes of the beam.展开更多
文摘This paper aims to present the exact closed form solutions and postbuckling behavior of the beam under a concentrated moment within the span length of beam. Two approaches are used in this paper. The non-linear governing differential equations based on elastica theory are derived and solved analytically for the exact closed form solutions in terms of elliptic integral of the first and second kinds. The results are presented in graphical diagram of equilibrium paths, equilibrium configurations and critical loads. For validation of the results from the first approach, the shooting method is employed to solve a set of nonlinear differential equations with boundary conditions. The set of nonlinear governing differential equations are integrated by using Runge-Kutta method fifth order with adaptive step size scheme. The error norms of the end conditions are minimized within prescribed tolerance (10^-5). The results from both approaches are in good agreement. From the results, it is found that the stability of this type of beam exhibits both stable and unstable configurations. The limit load point existed. The roller support can move through the hinged support in some cases of β and leads to the more complex of the configuration shapes of the beam.