This paper is based on the rainwater collection project in the retrofit of the Dongyi teaching block in Zhejiang University Xixi Campus.The analysis incorporates the local meteorological data, recycling water utilizat...This paper is based on the rainwater collection project in the retrofit of the Dongyi teaching block in Zhejiang University Xixi Campus.The analysis incorporates the local meteorological data, recycling water utilization, and precipitation adjustment.The rainwater collection system in this program also adds the condensation water from the heating, ventilation and air conditioning ( HVAC) system and the concentration from the reverse-osmosis system used for watering greens and supplying waterscapes.By calculating, the quantity of the HVAC condensation water in summer is 3.48 m3/d, and the quantity of the reverse-osmosis concentrated water is 198 to 396 L/d.This method solves the water shortage caused by high evaporation in summer and low precipitation in winter.Supported by empirical monitoring data, the proposed method significantly increases the economic efficiency of the system during the summer period.展开更多
The purpose of this research is to improve the retrieval accuracy for the suspended sediment concentration(SSC) from in situ and satellite remote sensing measurements in turbid East China estuarine and coastal waters....The purpose of this research is to improve the retrieval accuracy for the suspended sediment concentration(SSC) from in situ and satellite remote sensing measurements in turbid East China estuarine and coastal waters. For this aim, three important tasks are formulated and solved: 1) an estimation of remote-sensing reflectance spectra R_(rs)(λ) after atmospheric correction; 2) an estimation of R_(rs)(λ) from the radiometric signals above the air-water surface; and 3) an estimation of SSC from R_(rs)(λ). Six different models for radiometric R_(rs)(λ) determination and 28 models for SSC versus R_(rs)(λ) are analyzed based on the field observations made in the Changjiang River estuary and its adjacent coastal area. The SSC images based on the above-mentioned analysis are generated for the area.展开更多
The emulsion polymerization of aniline in three phase system of xylene functionalized protonic acid water was carried out using (NH 4) 2S 2O 4 as oxidant. The influences of water phase concentration on the viscosity, ...The emulsion polymerization of aniline in three phase system of xylene functionalized protonic acid water was carried out using (NH 4) 2S 2O 4 as oxidant. The influences of water phase concentration on the viscosity, conductivity, transmittance of polyaniline(PAN) latex and its powders were studied. The results show that the properties of PAN prepared through the emulsion polymerization are influenced by the amount of water used in the polymerization. The morphology of PAN varies with the water phase concentration used in the polymerization, which may result in the change of properties of PAN latex and its powders. When the volume fraction of water (φ) is about 20% 30%, the prepared PAN powder has higher conductivity, and the PAN latex has appropriate viscosity and particle size. The consumption of xylene was reduced at high φ value.展开更多
When compared to the average annual global temperature record from 1880, no published climate model posited on the assumption that the increasing concentration of atmospheric carbon dioxide is the driver of climate ch...When compared to the average annual global temperature record from 1880, no published climate model posited on the assumption that the increasing concentration of atmospheric carbon dioxide is the driver of climate change can accurately replicate the significant variability in the annual temperature record. Therefore, new principles of atmospheric physics are developed for determining changes in the average annual global temperature based on changes in the average atmospheric concentration of water vapor. These new principles prove that: 1) Changes in average global temperature are not driven by changes in the concentration of carbon dioxide;2) Instead, autonomous changes in the concentration of water vapor, <span style="white-space:nowrap;">Δ</span>TPW, drive changes in water vapor heating, thus, the average global temperature, <span style="white-space:nowrap;">Δ</span>T<sub>Avg</sub>, in accordance with this principle, <span style="white-space:normal;"><span style="white-space:nowrap;">Δ</span>T</span><span style="white-space:normal;"><sub>Avg</sub>=0.4<span style="white-space:normal;"><span style="white-space:nowrap;">Δ</span>TPW </span></span>the average accuracy of which is ±0.14%, when compared to the variable annual, 1880-2019, temperature record;3) Changes in the concentration of water vapor and changes in water vapor heating are not a feedback response to changes in the concentration of CO<sub>2</sub>;4) Rather, increases in water vapor heating and increases in the concentration of water vapor drive each other in an autonomous positive feedback loop;5) This feedback loop can be brought to a halt if the average global rate of precipitation can be brought into balance with the average global rate of evaporation and maintained there;and, 6) The recent increases in average global temperature can be reversed, if average global precipitation can be increased sufficiently to slightly exceed the average rate of evaporation.展开更多
A two-meter parabolic solar concentration dish has been modulated to produce boiled water over 100℃ for various purposes of central heating services. For an effective performance, the system required both continuous ...A two-meter parabolic solar concentration dish has been modulated to produce boiled water over 100℃ for various purposes of central heating services. For an effective performance, the system required both continuous exposure of the dish to sunlight during the day time as well as to an electric control circuit (tracking system). The amount of the potable water was dependent particularly on the accurate centering of the system which could increase upon preheating. This system has therefore been possible to heat up water at home via increasing the temperature in hot tank by both covering the hot water tank and isolating it from the surroundings using insulators. Applications of a successful parabolic solar concentration has also been designed to provide desalinated water for domestic usage which operates with temperatures higher than other types of the solar radiation for the future.展开更多
<p> A. <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Changes </span></span></span><...<p> A. <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Changes </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">in</span></span></span><span><span><span style="font-family:" color:black;"=""><span style="font-family:Verdana;"> average global temperature are not driven by changes in the concentration of carbon dioxide;</span></span></span></span> </p> <p> <span style="font-family:Verdana;">B. </span><span style="font-family:Verdana;">Instead, autonomous changes in the concentration of water vapor, </span><span style="font-family:Verdana;">Δ</span><span style="font-family:Verdana;">TPW, </span><span color:black;"=""><span style="font-family:Verdana;">drive changes in water vapor heating, thus, </span><span style="background:#C00000;font-family:Verdana;">changes in</span><span style="font-family:Verdana;"> the average global temperature, </span></span><span style="font-family:Verdana;">Δ</span><span style="font-family:Verdana;"><i>T</i></span><span style="font-family:Verdana;"><sub>Avg</sub></span><span color:black;"=""><span style="font-family:Verdana;">, </span><span style="background:#C00000;font-family:Verdana;">in deg. Celsius are calculated</span><span style="font-family:Verdana;"> in accordance with this principle,</span></span> </p> <p style="text-align:center;margin-left:10pt;"> <span><span><span style="font-family:" color:black;"=""><span style="font-family:Verdana;"></span><img src="Edit_6e770969-a7c9-4192-a6ad-03de906a4d65.bmp" alt="" /><br /> </span></span></span> </p> <p align="center" style="margin-left:10.0pt;text-align:center;"> <span><span><span style="font-family:;" "=""><span></span></span></span><span><span><span style="font-family:" color:black;"=""></span></span></span></span> </p> <p> <span><span><span style="font-family:" color:black;background:#c00000;"=""><span style="font-family:Verdana;">measured in kg<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span></span>m</span><sup><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">-</span>2</span></sup><span style="font-family:Verdana;">,</span></span></span></span><span><span><span style="font-family:" color:black;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the average accuracy of which is ±0.14%, when compared to the variable annual, 1880 </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:" color:black;"=""><span style="font-family:Verdana;"> 2019, </span><span style="background:#C00000;font-family:Verdana;">average global </span><span style="font-family:Verdana;">temperature record;</span></span></span></span> </p>展开更多
In order to reveal the influence of forced ventilation on the dispersion of droplets ejected from roadheader-mounted external sprayer,the paper studies the air-flowing field and the droplet distribution under the cond...In order to reveal the influence of forced ventilation on the dispersion of droplets ejected from roadheader-mounted external sprayer,the paper studies the air-flowing field and the droplet distribution under the condition of gentle breeze and normal forced ventilation in heading face using the particle tracking technology of computational fluid dynamics(CFD).The results show that air-flowing tendency in the same section presents great comparability in the period of gentle breeze and forced ventilation,and the difference mainly embodies in the different wind velocity.The influence of ventilation on the dispersion of droplets is faint under the gentle breeze condition.The droplet can be evenly distributed around the cutting head.However,under the normal forced ventilation,a large number of droplets will drift to the return air side.At the same time,droplet clusters are predominantly presented in the lower part of windward side and the middle of the leeward side around the cutting head.In contrast,the droplet concentration in other parts around cutting head decreases a lot and the droplets are unable to form close-grained mist curtain.So the dust escape channel is formed.In addition,the simulation results also reveal that the disturbance of air flow on the droplet distribution can be effectively relieved when using ventilation duct with Coanda effect(VDCE).Field experiment results show that the dust suppression efficiency of total dust and respirable dust increases respectively by 10.5%and 9.3%when using VDCE,which proves that it can weaken the influence of airflow on droplet dispersion.展开更多
Positron annihilation lifetime spectroscopy (PALS) is a powerful technique to study the free volume in polymers. The lifetime of ortho-positronium (o-Ps), a bound state of an electron and a positron, can be used t...Positron annihilation lifetime spectroscopy (PALS) is a powerful technique to study the free volume in polymers. The lifetime of ortho-positronium (o-Ps), a bound state of an electron and a positron, can be used to assess the pore size while the intensity can be used to characterize the number of pores. On the basis of the values of the long-lived o-Ps components in the lifetime spectra, the radii and fractional free volumes in the sulfonated poly (2,6-dimethyl-1,4- phenyleneoxide) (SPPO) membranes with different amounts of LiCl were calculated. It was found that, with the increasing amount of LiCl, the free volume radius and the fractional free volume firstly increased and then decreased. After immersing the membranes in distilled water, the free volume radius and the fractional free volume changed with different water concentrations in the membrane.展开更多
Suspended and waterborne polyurethane immobilized nitrifying bacteria have been adopted for evaluating the effects of environmental changes, such as temperature, dissolved oxygen (DO) concentration and pH, on nitrif...Suspended and waterborne polyurethane immobilized nitrifying bacteria have been adopted for evaluating the effects of environmental changes, such as temperature, dissolved oxygen (DO) concentration and pH, on nitrification characteristics under conditions of low ammonia concentrations. The results showed that nitrification was prone to complete with increasing pH, DO and temperature. Sensitivity analysis demonstrated the effects of temperature and pH on nitrification feature of suspended bacteria were slightly greater than those of immobilized nitrifying bacteria. Immobilized cells could achieve complete nitrification at low ammonia concentrations when DO was sufficient. Continuous experiments were carried out to discuss the removal of ammonia nitrogen from synthetic micropollute source water with the ammonia concentration of about 1mg/L using immobilized nitrifying bacteria pellets in an up-flow inner circulation reactor under different hydraulic retention times (HRT). The continuous removal rate remains above 80% even under HRT 30 min. The results verified that the waterborne polyurethane immobilized nitrifying bacteria pellets had great potential applications for micro-pollution source water treatment.展开更多
Polyethylene terephthalate mesh(PET) enhanced cellulose acetate membranes were fabricated via a phase inversion process. The membrane fabrication parameters that may affect the membrane performance were systematical...Polyethylene terephthalate mesh(PET) enhanced cellulose acetate membranes were fabricated via a phase inversion process. The membrane fabrication parameters that may affect the membrane performance were systematically evaluated including the concentration and temperature of the casting polymer solution and the temperature and time of the evaporation, coagulation and annealing processes. The water permeability and reverse salt flux were measured in forward osmosis(FO) mode for determination of the optimal membrane fabrication conditions. The optimal FO membrane shows a typical asymmetric sandwich structure with a mean thickness of about 148.2 μm. The performance of the optimal FO membrane was tested using 0.2 mol/L Na Cl as the feed solution and 1.5 mol/L glucose as the draw solution. The membrane displayed a water flux of 3.47 L/(m2·hr) and salt rejection of95.48% in FO mode. While in pressure retarded osmosis(PRO) mode, the water flux was4.74 L/(m2·hr) and salt rejection 96.03%. The high ratio of water flux in FO mode to that in PRO mode indicates that the fabricated membrane has a lower degree of internal concentration polarization than comparable membranes.展开更多
文摘This paper is based on the rainwater collection project in the retrofit of the Dongyi teaching block in Zhejiang University Xixi Campus.The analysis incorporates the local meteorological data, recycling water utilization, and precipitation adjustment.The rainwater collection system in this program also adds the condensation water from the heating, ventilation and air conditioning ( HVAC) system and the concentration from the reverse-osmosis system used for watering greens and supplying waterscapes.By calculating, the quantity of the HVAC condensation water in summer is 3.48 m3/d, and the quantity of the reverse-osmosis concentrated water is 198 to 396 L/d.This method solves the water shortage caused by high evaporation in summer and low precipitation in winter.Supported by empirical monitoring data, the proposed method significantly increases the economic efficiency of the system during the summer period.
基金Supported by the National Natural Science Foundation of China,NSFC(Nos.41371346,41271375)the Doctoral Fund of Ministry of Education of China(No.20120076110009)
文摘The purpose of this research is to improve the retrieval accuracy for the suspended sediment concentration(SSC) from in situ and satellite remote sensing measurements in turbid East China estuarine and coastal waters. For this aim, three important tasks are formulated and solved: 1) an estimation of remote-sensing reflectance spectra R_(rs)(λ) after atmospheric correction; 2) an estimation of R_(rs)(λ) from the radiometric signals above the air-water surface; and 3) an estimation of SSC from R_(rs)(λ). Six different models for radiometric R_(rs)(λ) determination and 28 models for SSC versus R_(rs)(λ) are analyzed based on the field observations made in the Changjiang River estuary and its adjacent coastal area. The SSC images based on the above-mentioned analysis are generated for the area.
基金TheNaturalScienceFoundationofHunanProvince (No .98JJY2 0 6 0 )
文摘The emulsion polymerization of aniline in three phase system of xylene functionalized protonic acid water was carried out using (NH 4) 2S 2O 4 as oxidant. The influences of water phase concentration on the viscosity, conductivity, transmittance of polyaniline(PAN) latex and its powders were studied. The results show that the properties of PAN prepared through the emulsion polymerization are influenced by the amount of water used in the polymerization. The morphology of PAN varies with the water phase concentration used in the polymerization, which may result in the change of properties of PAN latex and its powders. When the volume fraction of water (φ) is about 20% 30%, the prepared PAN powder has higher conductivity, and the PAN latex has appropriate viscosity and particle size. The consumption of xylene was reduced at high φ value.
文摘When compared to the average annual global temperature record from 1880, no published climate model posited on the assumption that the increasing concentration of atmospheric carbon dioxide is the driver of climate change can accurately replicate the significant variability in the annual temperature record. Therefore, new principles of atmospheric physics are developed for determining changes in the average annual global temperature based on changes in the average atmospheric concentration of water vapor. These new principles prove that: 1) Changes in average global temperature are not driven by changes in the concentration of carbon dioxide;2) Instead, autonomous changes in the concentration of water vapor, <span style="white-space:nowrap;">Δ</span>TPW, drive changes in water vapor heating, thus, the average global temperature, <span style="white-space:nowrap;">Δ</span>T<sub>Avg</sub>, in accordance with this principle, <span style="white-space:normal;"><span style="white-space:nowrap;">Δ</span>T</span><span style="white-space:normal;"><sub>Avg</sub>=0.4<span style="white-space:normal;"><span style="white-space:nowrap;">Δ</span>TPW </span></span>the average accuracy of which is ±0.14%, when compared to the variable annual, 1880-2019, temperature record;3) Changes in the concentration of water vapor and changes in water vapor heating are not a feedback response to changes in the concentration of CO<sub>2</sub>;4) Rather, increases in water vapor heating and increases in the concentration of water vapor drive each other in an autonomous positive feedback loop;5) This feedback loop can be brought to a halt if the average global rate of precipitation can be brought into balance with the average global rate of evaporation and maintained there;and, 6) The recent increases in average global temperature can be reversed, if average global precipitation can be increased sufficiently to slightly exceed the average rate of evaporation.
文摘A two-meter parabolic solar concentration dish has been modulated to produce boiled water over 100℃ for various purposes of central heating services. For an effective performance, the system required both continuous exposure of the dish to sunlight during the day time as well as to an electric control circuit (tracking system). The amount of the potable water was dependent particularly on the accurate centering of the system which could increase upon preheating. This system has therefore been possible to heat up water at home via increasing the temperature in hot tank by both covering the hot water tank and isolating it from the surroundings using insulators. Applications of a successful parabolic solar concentration has also been designed to provide desalinated water for domestic usage which operates with temperatures higher than other types of the solar radiation for the future.
文摘<p> A. <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Changes </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">in</span></span></span><span><span><span style="font-family:" color:black;"=""><span style="font-family:Verdana;"> average global temperature are not driven by changes in the concentration of carbon dioxide;</span></span></span></span> </p> <p> <span style="font-family:Verdana;">B. </span><span style="font-family:Verdana;">Instead, autonomous changes in the concentration of water vapor, </span><span style="font-family:Verdana;">Δ</span><span style="font-family:Verdana;">TPW, </span><span color:black;"=""><span style="font-family:Verdana;">drive changes in water vapor heating, thus, </span><span style="background:#C00000;font-family:Verdana;">changes in</span><span style="font-family:Verdana;"> the average global temperature, </span></span><span style="font-family:Verdana;">Δ</span><span style="font-family:Verdana;"><i>T</i></span><span style="font-family:Verdana;"><sub>Avg</sub></span><span color:black;"=""><span style="font-family:Verdana;">, </span><span style="background:#C00000;font-family:Verdana;">in deg. Celsius are calculated</span><span style="font-family:Verdana;"> in accordance with this principle,</span></span> </p> <p style="text-align:center;margin-left:10pt;"> <span><span><span style="font-family:" color:black;"=""><span style="font-family:Verdana;"></span><img src="Edit_6e770969-a7c9-4192-a6ad-03de906a4d65.bmp" alt="" /><br /> </span></span></span> </p> <p align="center" style="margin-left:10.0pt;text-align:center;"> <span><span><span style="font-family:;" "=""><span></span></span></span><span><span><span style="font-family:" color:black;"=""></span></span></span></span> </p> <p> <span><span><span style="font-family:" color:black;background:#c00000;"=""><span style="font-family:Verdana;">measured in kg<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span></span>m</span><sup><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">-</span>2</span></sup><span style="font-family:Verdana;">,</span></span></span></span><span><span><span style="font-family:" color:black;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the average accuracy of which is ±0.14%, when compared to the variable annual, 1880 </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:" color:black;"=""><span style="font-family:Verdana;"> 2019, </span><span style="background:#C00000;font-family:Verdana;">average global </span><span style="font-family:Verdana;">temperature record;</span></span></span></span> </p>
基金supported by the Program for Postgraduates Research Innovation in University of Jiangsu Province of China (No.CXLX13_955)the National Natural Science Foundation of China (No.51104153)
文摘In order to reveal the influence of forced ventilation on the dispersion of droplets ejected from roadheader-mounted external sprayer,the paper studies the air-flowing field and the droplet distribution under the condition of gentle breeze and normal forced ventilation in heading face using the particle tracking technology of computational fluid dynamics(CFD).The results show that air-flowing tendency in the same section presents great comparability in the period of gentle breeze and forced ventilation,and the difference mainly embodies in the different wind velocity.The influence of ventilation on the dispersion of droplets is faint under the gentle breeze condition.The droplet can be evenly distributed around the cutting head.However,under the normal forced ventilation,a large number of droplets will drift to the return air side.At the same time,droplet clusters are predominantly presented in the lower part of windward side and the middle of the leeward side around the cutting head.In contrast,the droplet concentration in other parts around cutting head decreases a lot and the droplets are unable to form close-grained mist curtain.So the dust escape channel is formed.In addition,the simulation results also reveal that the disturbance of air flow on the droplet distribution can be effectively relieved when using ventilation duct with Coanda effect(VDCE).Field experiment results show that the dust suppression efficiency of total dust and respirable dust increases respectively by 10.5%and 9.3%when using VDCE,which proves that it can weaken the influence of airflow on droplet dispersion.
基金supported by "Hundred Talents Program Fund" of Chinese Academy of Sciences
文摘Positron annihilation lifetime spectroscopy (PALS) is a powerful technique to study the free volume in polymers. The lifetime of ortho-positronium (o-Ps), a bound state of an electron and a positron, can be used to assess the pore size while the intensity can be used to characterize the number of pores. On the basis of the values of the long-lived o-Ps components in the lifetime spectra, the radii and fractional free volumes in the sulfonated poly (2,6-dimethyl-1,4- phenyleneoxide) (SPPO) membranes with different amounts of LiCl were calculated. It was found that, with the increasing amount of LiCl, the free volume radius and the fractional free volume firstly increased and then decreased. After immersing the membranes in distilled water, the free volume radius and the fractional free volume changed with different water concentrations in the membrane.
文摘Suspended and waterborne polyurethane immobilized nitrifying bacteria have been adopted for evaluating the effects of environmental changes, such as temperature, dissolved oxygen (DO) concentration and pH, on nitrification characteristics under conditions of low ammonia concentrations. The results showed that nitrification was prone to complete with increasing pH, DO and temperature. Sensitivity analysis demonstrated the effects of temperature and pH on nitrification feature of suspended bacteria were slightly greater than those of immobilized nitrifying bacteria. Immobilized cells could achieve complete nitrification at low ammonia concentrations when DO was sufficient. Continuous experiments were carried out to discuss the removal of ammonia nitrogen from synthetic micropollute source water with the ammonia concentration of about 1mg/L using immobilized nitrifying bacteria pellets in an up-flow inner circulation reactor under different hydraulic retention times (HRT). The continuous removal rate remains above 80% even under HRT 30 min. The results verified that the waterborne polyurethane immobilized nitrifying bacteria pellets had great potential applications for micro-pollution source water treatment.
基金the financial support of the National Natural Science Foundation of China(Nos.51378491,21307149)
文摘Polyethylene terephthalate mesh(PET) enhanced cellulose acetate membranes were fabricated via a phase inversion process. The membrane fabrication parameters that may affect the membrane performance were systematically evaluated including the concentration and temperature of the casting polymer solution and the temperature and time of the evaporation, coagulation and annealing processes. The water permeability and reverse salt flux were measured in forward osmosis(FO) mode for determination of the optimal membrane fabrication conditions. The optimal FO membrane shows a typical asymmetric sandwich structure with a mean thickness of about 148.2 μm. The performance of the optimal FO membrane was tested using 0.2 mol/L Na Cl as the feed solution and 1.5 mol/L glucose as the draw solution. The membrane displayed a water flux of 3.47 L/(m2·hr) and salt rejection of95.48% in FO mode. While in pressure retarded osmosis(PRO) mode, the water flux was4.74 L/(m2·hr) and salt rejection 96.03%. The high ratio of water flux in FO mode to that in PRO mode indicates that the fabricated membrane has a lower degree of internal concentration polarization than comparable membranes.