This paper studies the existence of stable standing waves for the nonlinear Schrödinger equation with Hartree-type nonlinearity i∂tψ+Δψ+| ψ |pψ+(| x |−γ∗| ψ |2)ψ=0, (t,x)∈[ 0,T )×ℝN.Where ψ=ψ(t,...This paper studies the existence of stable standing waves for the nonlinear Schrödinger equation with Hartree-type nonlinearity i∂tψ+Δψ+| ψ |pψ+(| x |−γ∗| ψ |2)ψ=0, (t,x)∈[ 0,T )×ℝN.Where ψ=ψ(t,x)is a complex valued function of (t,x)∈ℝ+×ℝN. The parameters N≥3, 0p4Nand 0γmin{ 4,N }. By using the variational methods and concentration compactness principle, we prove the orbital stability of standing waves.展开更多
In this paper, we study blow-up solutions of the Cauchy problem to the L2 critical nonlinear Schrdinger equation with a Stark potential. Using the variational characterization of the ground state for nonlinear Schrdin...In this paper, we study blow-up solutions of the Cauchy problem to the L2 critical nonlinear Schrdinger equation with a Stark potential. Using the variational characterization of the ground state for nonlinear Schrdinger equation without any potential, we obtain some concentration properties of blow-up solutions, including that the origin is the blow-up point of the radial blow-up solutions, the phenomenon of L2-concentration and rate of L2-concentration of blow-up solutions.展开更多
In this paper, we study the Schrodinger equations (-△)^(s)u + V(x)u = a(x)|u|^(p-2)u + b(x)|u|^(q-2)u, x∈R^(N),where 0 < s < 1, 2 < q < p < 2_(s)^(*), 2_(s)^(*) is the fractional Sobolev critical expo...In this paper, we study the Schrodinger equations (-△)^(s)u + V(x)u = a(x)|u|^(p-2)u + b(x)|u|^(q-2)u, x∈R^(N),where 0 < s < 1, 2 < q < p < 2_(s)^(*), 2_(s)^(*) is the fractional Sobolev critical exponent. Under suitable assumptions on V, a and b for which there may be no ground state solution, the existence of positive solutions are obtained via variational methods.展开更多
We study a Schrodinger system with the sum of linear and nonlinear couplings.Applying index theory,we obtain infinitely many solutions for the system with periodic potent ials.Moreover,by using the concentration compa...We study a Schrodinger system with the sum of linear and nonlinear couplings.Applying index theory,we obtain infinitely many solutions for the system with periodic potent ials.Moreover,by using the concentration compactness met hod,we prove the exis tence and nonexistence of ground state solutions for the system with close-to-periodic potentials.展开更多
This paper is concerned with the following nonlinear Dirichlet problem:where △pu = div(| ▽u|p- 2 ▽u) is the p-Laplacian of u, Ω is a bounded domain in Rn (n > 3), 1 < p < n, p = -pn/n-p is the critical ex...This paper is concerned with the following nonlinear Dirichlet problem:where △pu = div(| ▽u|p- 2 ▽u) is the p-Laplacian of u, Ω is a bounded domain in Rn (n > 3), 1 < p < n, p = -pn/n-p is the critical exponent for the Sobolev imbedding, λ > 0 and f(x, u) satisfies some conditions. It reaches the conclusion that this problem has infinitely many solutions. Some results as p = 2 or f(x,u) = |u|q-2u, where 1 < q < p, are generalized.展开更多
In this paper,we establish an improved Hardy–Littlewood–Sobolev inequality on Snunder higher-order moments constraint.Moreover,by constructing precise test functions,using improved Hardy–Littlewood–Sobolev inequal...In this paper,we establish an improved Hardy–Littlewood–Sobolev inequality on Snunder higher-order moments constraint.Moreover,by constructing precise test functions,using improved Hardy–Littlewood–Sobolev inequality on S^(n),we show such inequality is almost optimal in critical case.As an application,we give a simpler proof of the existence of the maximizer for conformal Hardy–Littlewood–Sobolev inequality.展开更多
In this paper we study the existence of nontrivial solutions to the well-known Brezis–Nirenberg problem involving the fractional p-Laplace operator in unbounded cylinder type domains.By means of the fractional Poinca...In this paper we study the existence of nontrivial solutions to the well-known Brezis–Nirenberg problem involving the fractional p-Laplace operator in unbounded cylinder type domains.By means of the fractional Poincaréinequality in unbounded cylindrical domains,we first study the asymptotic property of the first eigenvalueλp,s(ωδ)with respect to the domainωδ.Then,by applying the concentration-compactness principle for fractional Sobolev spaces in unbounded domains,we prove the existence results.The present work complements the results of Mosconi–Perera–Squassina–Yang[The Brezis–Nirenberg problem for the fractional p-Laplacian.C alc.Var.Partial Differential Equations,55(4),25 pp.2016]to unbounded domains and extends the classical Brezis–Nirenberg type results of Ramos–Wang–Willem[Positive solutions for elliptic equations with critical growth in unbounded domains.In:Chapman Hall/CRC Press,Boca Raton,2000,192–199]to the fractional p-Laplacian setting.展开更多
This paper is concerned with the blow-up solutions of the Gross-Pitaevskii equation. Using the concentration compact principle and the variational characterization of the corresponding ground state, we obtain the limi...This paper is concerned with the blow-up solutions of the Gross-Pitaevskii equation. Using the concentration compact principle and the variational characterization of the corresponding ground state, we obtain the limiting profile of blow-up solutions with critical mass in the corresponding weighted energy space. Moreover, we extend this result to small super-critical mass case by the variational methods and scaling technique.展开更多
文摘This paper studies the existence of stable standing waves for the nonlinear Schrödinger equation with Hartree-type nonlinearity i∂tψ+Δψ+| ψ |pψ+(| x |−γ∗| ψ |2)ψ=0, (t,x)∈[ 0,T )×ℝN.Where ψ=ψ(t,x)is a complex valued function of (t,x)∈ℝ+×ℝN. The parameters N≥3, 0p4Nand 0γmin{ 4,N }. By using the variational methods and concentration compactness principle, we prove the orbital stability of standing waves.
基金supported by National Science Foundation of China (11071177)
文摘In this paper, we study blow-up solutions of the Cauchy problem to the L2 critical nonlinear Schrdinger equation with a Stark potential. Using the variational characterization of the ground state for nonlinear Schrdinger equation without any potential, we obtain some concentration properties of blow-up solutions, including that the origin is the blow-up point of the radial blow-up solutions, the phenomenon of L2-concentration and rate of L2-concentration of blow-up solutions.
基金supported by the NNSF of China(12171014, 12271539, 12171326)the Beijing Municipal Commission of Education (KZ202010028048)the Research Foundation for Advanced Talents of Beijing Technology and Business University (19008022326)。
文摘In this paper, we study the Schrodinger equations (-△)^(s)u + V(x)u = a(x)|u|^(p-2)u + b(x)|u|^(q-2)u, x∈R^(N),where 0 < s < 1, 2 < q < p < 2_(s)^(*), 2_(s)^(*) is the fractional Sobolev critical exponent. Under suitable assumptions on V, a and b for which there may be no ground state solution, the existence of positive solutions are obtained via variational methods.
文摘We study a Schrodinger system with the sum of linear and nonlinear couplings.Applying index theory,we obtain infinitely many solutions for the system with periodic potent ials.Moreover,by using the concentration compactness met hod,we prove the exis tence and nonexistence of ground state solutions for the system with close-to-periodic potentials.
基金Supported by NSFC(10171032) NSF of Guangdong Proviance (011606)
文摘This paper is concerned with the following nonlinear Dirichlet problem:where △pu = div(| ▽u|p- 2 ▽u) is the p-Laplacian of u, Ω is a bounded domain in Rn (n > 3), 1 < p < n, p = -pn/n-p is the critical exponent for the Sobolev imbedding, λ > 0 and f(x, u) satisfies some conditions. It reaches the conclusion that this problem has infinitely many solutions. Some results as p = 2 or f(x,u) = |u|q-2u, where 1 < q < p, are generalized.
基金the National Science Foundation of China(Grant Nos.12101380,12071269)China Postdoctoral Science Foundation(Grant No.2021M700086)Youth Innovation Team of Shaanxi Universities and the Fundamental Research Funds for the Central Universities(Grant Nos.GK202307001,GK202202007)。
文摘In this paper,we establish an improved Hardy–Littlewood–Sobolev inequality on Snunder higher-order moments constraint.Moreover,by constructing precise test functions,using improved Hardy–Littlewood–Sobolev inequality on S^(n),we show such inequality is almost optimal in critical case.As an application,we give a simpler proof of the existence of the maximizer for conformal Hardy–Littlewood–Sobolev inequality.
基金Natural Science Foundation of China(Grant No.12071185)。
文摘In this paper we study the existence of nontrivial solutions to the well-known Brezis–Nirenberg problem involving the fractional p-Laplace operator in unbounded cylinder type domains.By means of the fractional Poincaréinequality in unbounded cylindrical domains,we first study the asymptotic property of the first eigenvalueλp,s(ωδ)with respect to the domainωδ.Then,by applying the concentration-compactness principle for fractional Sobolev spaces in unbounded domains,we prove the existence results.The present work complements the results of Mosconi–Perera–Squassina–Yang[The Brezis–Nirenberg problem for the fractional p-Laplacian.C alc.Var.Partial Differential Equations,55(4),25 pp.2016]to unbounded domains and extends the classical Brezis–Nirenberg type results of Ramos–Wang–Willem[Positive solutions for elliptic equations with critical growth in unbounded domains.In:Chapman Hall/CRC Press,Boca Raton,2000,192–199]to the fractional p-Laplacian setting.
基金supported by National Natural Science Foundation of China (Grant No. 10771151)Scientific Research Fund of Sichuan Provincial Education Department (Grant No. 2006A068)
文摘This paper is concerned with the blow-up solutions of the Gross-Pitaevskii equation. Using the concentration compact principle and the variational characterization of the corresponding ground state, we obtain the limiting profile of blow-up solutions with critical mass in the corresponding weighted energy space. Moreover, we extend this result to small super-critical mass case by the variational methods and scaling technique.